Algebraic Model Counting

Roderick de Britto Heemskerk

Luka Janjić

WMC reminder

- Theory *T* over variables *V*
- Weight function $w : L \rightarrow \mathbb{R}^+$
- Set of models *M*(*T*)

$$\mathbf{WMC}(T) = \sum_{I \in \mathcal{M}(T)} \prod_{l \in I} w(l)$$

AMC as a generalization of WMC

$$\mathbf{WMC}(T) = \sum_{I \in \mathcal{M}(T)} \prod_{l \in I} w(l)$$
$$\downarrow$$
$$\mathbf{A}(T) = \bigoplus_{I \in \mathcal{M}(T)} \bigotimes_{l \in I} \alpha(l)$$

Commutative Semiring

- Set A equipped with:
 - $\circ \oplus \rightarrow$ generalized addition
 - $\circ \otimes \rightarrow$ generalized multiplication
 - $e^{\bigoplus} \in A \rightarrow$ additive identity
 - $e^{\otimes} \in A \rightarrow$ multiplicative identity

Commutative Semiring – Laws

Associativity of \oplus and \otimes :

• $a \oplus (b \oplus c) = (a \oplus b) \oplus c$

Commutativity of \oplus and \otimes :

• a ⊕ b = b ⊕ a

Distributivity of \otimes over \oplus :

• $a \otimes (b \oplus c) = (a \otimes b) \oplus (a \otimes c)$

Annihilation by e^{\oplus} :

Example semiring: (\mathbb{N} , +, \cdot , 0, 1)

- Addition and multiplication are associative, commutative and distributive
- X + 0 = X
- X · 1 = X
- $X \cdot 0 = 0$
- (\mathbb{N} , + , \cdot , 0 , 1) is a commutative semiring

Examples

- WMC \rightarrow $(\mathbb{R}_{\geq 0}, 0, 1, +, \cdot), \alpha(l) \in \mathbb{R}_{\geq 0}$
- PROB \rightarrow $(\mathbb{R}_{\geq 0}, 0, 1, +, \cdot), \alpha(l) \in [0, 1]$
- S-PATH \rightarrow ($\mathbb{N}^{\infty}, \infty, 0, \min, +$), $\alpha(I) \in \mathbb{N}$
- GRAD \rightarrow recall the guest lecture
- many more...

Negation Normal Form

• Class of formulae

• Directed Acyclic Graph

Properties

- Decomposable
 - Children of a conjunction node share no variables.

- Deterministic
 - Only one of the children of disjunction nodes can be True at a time.

- Smooth
 - All children of disjunction nodes have the same variables.

Decomposability

Children of a conjunction node

share no variables.

Decomposability

Children of a conjunction node share no variables.

DNNF

Determinism

Only one of the children of disjunction

nodes can be True at a time.

Determinism

Only one of the children of disjunction

nodes can be True at a time.

d-NNF

Smooth

All children of disjunction nodes have the same variables.

Smooth

All children of disjunction nodes have the same variables.

s-NNF

Smooth

All children of disjunction nodes have the same variables.

sd-DNNF

Succinctness

• Definition

• Compactness

• More succinct \rightarrow Less space and Quicker execution

Let's put it together!

What do we have so far

- Problems as **sums-of-products** over a commutative semiring
- Compile them to compact form (**NNF**s) for easy computation
- Three properties: **smooth**, **deterministic**, **decomposable**
- **Succinctness** as a measure of how "compact" can we make it

Naive solution – MODS

- Represent *all models M*(*T*) explicitly
- MODS ⊂ sd-DNNF
- **Exponentially less succinct** than the rest

Expression in sd-DNNF:

$$f(x,y) = x$$

(F	
TU	Delft

х	У	f(x,y)
0	0	0
0	1	0
1	0	1
1	1	1

Equivalent MODS: $(x \land \neg y) \lor (x \land y)$

Can we make it better?

Yes, but...

- **s**mooth, **d**eterministic, **D**ecomposable NNFs
 - More succinct than MODS
 - Still contains MODS
- Removing requirements on the NNF:
 - Increases succinctness
 - Imposes requirements on the semiring
 - Fewer problems fit in

Evaluation

1: function EVAL $(N, \oplus, \otimes, e^{\oplus}, e^{\otimes}, \alpha)$ 2: if N is a true node \top then return e^{\otimes} 3: if N is a false node \bot then return e^{\oplus} 4: if N is a literal node l then return $\alpha(l)$ 5: if N is a disjunction $\bigvee_{i=1}^{m} N_i$ then 6: return $\bigoplus_{i=1}^{m} \text{EVAL}(N_i, \oplus, \otimes, e^{\oplus}, e^{\otimes}, \alpha)$ 7: if N is a conjunction $\bigwedge_{i=1}^{m} N_i$ then 8: return $\bigotimes_{i=1}^{m} \text{EVAL}(N_i, \oplus, \otimes, e^{\oplus}, e^{\otimes}, \alpha)$

Evaluation

Base cases:

- 2: if N is a true node \top then return e^{\otimes}
- 3: **if** N is a false node \perp **then** return e^{\oplus}
- 4: if N is a literal node l then return $\alpha(l)$

Recursive cases:

- 5: if N is a disjunction $\bigvee_{i=1}^{m} N_i$ then
- 6: return $\bigoplus_{i=1}^{m} \text{EVAL}(N_i, \oplus, \otimes, e^{\oplus}, e^{\otimes}, \alpha)$
- 7: if N is a conjunction $\bigwedge_{i=1}^{m} N_i$ then

8: return
$$\bigotimes_{i=1}^{m} \operatorname{EVAL}(N_i, \oplus, \otimes, e^{\oplus}, e^{\otimes}, \alpha)$$

AMC in a nutshell

- A general framework fitting many problems
- Commutative semiring $(A, \bigoplus, \otimes, 0, 1)$ to model the problem
- Labeling function $\alpha : L \rightarrow A$ to evaluate literals
- What **properties** does it satisfy? The more the better
 - Idempotent $\bigoplus \rightarrow$ relax determinism
 - Neutral (\oplus , α) \rightarrow relax smoothness
 - Consistency preserving and idempotent (\otimes , α)

 \rightarrow relax decomposability

