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Contributions of the paper

A novel approach for approximate sampling based on incremental inference
Avoid expensive sampling computation by sampling from a known program

Adapt traces from one program to another using a Trace translator
Optimise adapted traces (samples) using sequential Monte Carlo
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Incremental inference

Given two probabilistic programs P and Q, and samples of
P obtained using an existing inference algorithm, generate
samples for Q by leveraging the samples for P.

Construct a trace translator to adapt samples of P into samples of Q
Compute weights for the adapted traces and reweight like in SMC
Optionally perform resampling proportional to the computed weights
Use MCMC sampling intermittently to increase approximation quality
The generated output traces store all the inferred properties
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Applications

When the posterior distributions of the programs are “close enough”
When the programs are variants of the same model

When the data the models are conditioned on is changed

When the prior assumptions of the models are changed

When model changes originate from an automated process

Proceed with standard non-incremental inference
Use the available traces to warm-start samplers like MCMC ?
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Applications

e When the posterior distributions of the programs are “close enough”

e \When the nroarams are variants nf the same mondel

Why not always use MCMC with the available traces?

Traces might contain different number of random choices.
MCMC is less efficient when programs are very similar.
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e Use the available traces to warm-start samplers like MCMC ?
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Getting technical
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Incremental inference

e Construct a trace translator to adapt samples of P into samples of Q
e Compute weights for the adapted traces and reweight like in SMC
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e Construct a trace translator to adapt samples of P into samples of Q
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modification of program

correspondence of
random choices
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e Compute weights for the adapted traces and reweight like in SMC

Inference Inference

(expensive) - B Pr{u ~ Q] B Pru ~ Q] (expensive)
PO o) T ey Prlt ~ Pl kpoo(ust)
EEEEE ) EEELE
traces ﬁ/p_,Q(u; t) - IiI"[u ~ Q] fQ—>P(t; u) (weighted) traces

Pr[t ~ P] kp_>Q(u; t)
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Incremental inference

e Use MCMC sampling intermittently to increase approximation quality
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Incremental inference

Why can we use MCMC sampling here, but not before?

We apply MCMC to valid traces for target program Q

e Use MCMC sampling intermittently to increase approximation quality
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Implementation
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Step-by-Step

o=

=Qo O

Establish correspondence function f between variables
Initialize P-score and Q-score to 0 (for weighting)
Run target program Q once to obtain trace u
For every variable in u, and every available trace t:
a. s the variable in trace t?
I.  Yes? Take the value from t.
Increase Q-score by log probability of corresponding choice in Q
ii. No? Sample a new value from the prior of Q.
b. Is this an observation?
I.  Increase Q-score by log probability of observation
P-score = sum of log probabilities of choices and observations of t
Log weight = P-score - Q-score Br[u ~ Q] £op(t; 1)
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Recap

1. Establish variable correspondences

2. Collect traces t from original program P

3. Translate traces t to traces u in target program Q
4. Calculate weights for each step

5. Resample traces u according to weight (Optional)
6. Apply MCMC to traces u to improve their quality
5
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The experiments
(were bad)
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Experimental results
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1 Two different test setups
T Delft Showing different metrics



Questions?
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