ProbLog: A Probabilistic Prolog and its Application in Link Discovery

Max Le Blansch, Bogdan Simion

TUDelft

Paper context

- At the time when the paper was released, there were no programs for modelling the exact inference for discrete variables
- Discrete variables require separate rules than the continuous variables

TUDelft

Intro to Prolog

- Part of the logical programming languages family
- Program consists of a set of definite clauses
- Programs can contain the following: rules, facts and variables
- Clauses can be only True or False

TUDelft

Prolog example

```
burglary.
hears_alarm(mary).
alarm :- burglary.
alarm :- earthquake.
calls(X) :- alarm, hears_alarm(X).
call :- calls(X).
9
```

- Alarm and calls are called rules
- hears_alarm, burglary are called facts
- Mary is a variable

Why extending Prolog to Probabilistic Programming?

- Adding probabilities to clauses is closer to real-world problems
- Probabilistic Database is slow -> 10 or more conjuncts are infeasible to compute
- Many practical applications (i.e. life sciences) require computing probabilities in network relations

TUDelft

Intro to ProbLog

- Built on top of Prolog, both being very similar
- Only major difference: Problog has probabilities of success attached to the clauses
- It has equivalent functions for sample and observe (can you spot them in the next slide?)

TUDelft

ProbLog example

```
    1.0:: likes(X,Y):- friendof( }X,Y)\mathrm{ .
0.8:: likes(X,Y):- friendof(X,Z), likes(Z,Y).
0.5:: friendof(john,mary).
0.5:: friendof(mary, pedro).
0.5:: friendof(pedro,tom).
What are sample and observe here?
evidence(likes(john, pedro), false).
query(likes(mary, tom)).|
\begin{tabular}{lll} 
Query \(\boldsymbol{V}\) & Location & Probability \\
\hline likes(mary,tom) & \(11: 7\) & 0.15 \\
\hline
\end{tabular}
```

Screenshots taken from:
https://dtai.cs.kuleuven.be/problog/tutorial/basic/02_b ayes.html (more examples there as well)

Computing queries

Two steps:

1. Build monotone DNF formula representing all solutions
2. Compute the probability of this DNF formula

Computing queries

Two steps:

1. Build monotone DNF formula representing all solutions

- SLD-resolution to transform query into equivalent tree

Root is query to be proven
Recursively generate subgoals

- Use the disjunction of proof paths in tree as DNF

2. Compute the probability of this DNF formula

Computing queries | SLD-resolution example

```
        ?- \(1(\mathrm{j}, \mathrm{t})\).
        ll/ \(\quad 12\)
\(:-\mathrm{fo}(\mathrm{j}, \mathrm{t}) .:-\mathrm{fo}(\mathrm{j}, \mathrm{A}), \mathrm{l}(\mathrm{A}, \mathrm{t})\).
            fl 1
            :- \(1(\mathrm{~m}, \mathrm{t})\).
\(:-\frac{l \nu}{l l} \quad:-\mathrm{fo}(\mathrm{m}, \mathrm{B}), \mathrm{l}(\mathrm{B}, \mathrm{t})\).
```



```
\(:-\mathrm{fo}(\mathrm{p}, \mathrm{t}) . \quad:-\mathrm{fo}(\mathrm{p}, \mathrm{C}), \mathrm{l}(\mathrm{C}, \mathrm{t}) . \quad:-\mathrm{fo}(\mathrm{t}, \mathrm{t}) . \quad: \quad:-\mathrm{fo}(\mathrm{t}, \mathrm{E}), \mathrm{l}(\mathrm{E}, \mathrm{t})\).
\(f 41 \quad f 41\)
            \(\square \quad l l)^{:-1(t, t)} l_{2}\)
                \(: \underline{i-\mathrm{fo}(\mathrm{t}, \mathrm{t}) .} \quad: \underline{-\mathrm{fo}(\mathrm{t}, \mathrm{D}), \mathrm{l}(\mathrm{D}, \mathrm{t}) .}\)
```

1.0: likes (X, Y) :- friendof (X, Y).
0.8: likes (X, Y) :- friendof (X, Z), likes (Z, Y).
0.5: friendof(john,mary).
0.5: friendof(mary,pedro).
0.5 : friendof(mary,tom).
0.5 : friendof(pedro,tom).

Computing queries | SLD-resolution example

1.0: likes (X, Y) :- friendof (X, Y).
0.8: likes (X, Y) :- friendof (X, Z), likes (Z, Y).
0.5: friendof(john,mary).
0.5: friendof(mary,pedro).
0.5 : friendof(mary,tom).
0.5 : friendof(pedro,tom).

$$
P\left(\left(l_{1} \wedge l_{2} \wedge f_{1} \wedge f_{2} \wedge f_{1}\right) \vee\left(\underline{\left.l_{1} \wedge l_{2} \wedge f_{1} \wedge f_{3}\right)}\right) .\right.
$$

TUDelft

Computing queries

Two steps:

1. Build monotone DNF formula representing all solutions
2. Compute the probability of this DNF formula

- Using Binary Decision Diagram (BDD) representation

Start from full binary tree, merging isomorphic subgraphs and deleting redundant nodes

Computing queries | BDD calculation example

Computing queries | BDD calculation example

1.0: likes (X, Y) :- friendof (X, Y).
0.8: likes (X, Y) :- friendof (X, Z), likes (Z, Y).
0.5 : friendof(john,mary).
0.5 : friendof(mary,pedro).
0.5: friendof(mary,tom).

$\begin{array}{llllll}0 & 1 & 2 & 3 & 4 & 5\end{array}$

T ${ }^{T}$ UDelft

$$
P\left(\left(l_{1} \wedge l_{2} \wedge f_{1} \wedge f_{2} \wedge f_{4}\right) \vee\left(l_{1} \wedge l_{2} \wedge f_{1} \wedge f_{3}\right)\right)
$$

Computing queries | BDD calculation example

1.0: likes (X, Y) :- friendof (X, Y).
0.8: likes (X, Y) :- friendof (X, Z), likes (Z, Y).
0.5 : friendof(john,mary).
0.5 : friendof(mary,pedro).
0.5: friendof(mary,tom).

0
2
3
4
5
TUDelft

$$
P\left(\left(l_{1} \wedge l_{2} \wedge f_{1} \wedge f_{2} \wedge f_{4}\right) \vee\left(l_{1} \wedge l_{2} \wedge f_{1} \wedge f_{3}\right)\right)
$$

Computing queries | BDD calculation example

$$
P\left(\left(l_{2} \wedge f_{1} \wedge f_{2} \wedge f_{4}\right) \vee\left(l_{2} \wedge f_{1} \wedge f_{3}\right)\right)
$$

TUDelft

Computing queries

Two steps:

1. Build monotone DNF formula representing all solutions
2. Compute the probability of this DNF formula

- Using Binary Decision Diagram (BDD) representation

Start from full binary tree, merging isomorphic subgraphs and deleting redundant nodes

- Heuristically determine variable order in SOTA BDD algorithms
- Reusable BDD for different queries

TUDelft

Approximating the success probability

- Why approximate?
- Iterative deepening to compute SLD-tree
- Use incomplete SLD-tree to derive upper and lower bound
- Lower bound encodes successful proofs found so far
- Upper bound encodes all proofs all proofs found so far
- Keep growing tree until upper and lower bound are sufficiently close

Results

- Good runtime in terms of level depthness
- Can deal with many conjuncts, up to 100k.
- Probability is converging to the true one after the 6th depth level
- Bounds are converging to ~ 0.2 after the 6th depth level.

Running times for 10 test graphs with 1400 edges.

TUDelft

Results

Convergence of the probability interval for 10 test graphs with 1400 edges.

Convergence of bounds for one graph with 1800 edges, as a function of the search level.

Questions

- What is the addition of ProbLog to Prolog?

Questions

- What is the addition of ProbLog to Prolog?
- What other probabilistic programming languages also have inherently included upper and lower bounds?

Thank you for your attention!

Max Le Blansch, Bogdan Simion

