
Gen: A General-Purpose Probabilistic 
Programming System with 
Programmable Inference

By: Chrysanthos Kindynis & Kylian Kropf

Cusumano-Towner, Marco F., et al. "Gen: a general-purpose probabilistic programming system with programmable inference." Proceedings of the 40th acm 
sigplan conference on programming language design and implementation. 2019.



Presentation timeline

1. Historically speaking: why was Gen needed
2. Technical flow
3. Practical code example
4. Quiz and conclusions



Background

- MIT authors (2019):
- Marco Cusmano-Towner
- Feras Saad
- Alexander Lew
- Vikash Mansinghka

- Impact: 176 citations



High level concept

- Modelling flexibility
- Trade offs 

- Database view
- Allows for taking care of technical steps automatically

- Inference flexibility
- Inference library
- Domain specific knowledge
- Custom methods

=> improved performance



Theoretical program flow

In Gen:

1. First, we define a generative model
2. Second, we write an inference program
3. Finally, we run the inference program together with data, 

and return the results

Generative 
Function

Model Compiler

Model Data

Inference Program

Result

Result

Inference
Engine

Model Data

Traditional Gen



Trace

- Traces are no longer just a passive historical record 
- It has an active role in our Probabilistic program, present in:

- Arguments 
- Return statements 

- This supports the generalizability and flexibility of the language

- @ChoiceMap: mapping from a set of addresses (A) to a set of values (V)



Illustration of code example we are trying to present

- Goal: Infer the orientation of the depth camera relative to the floor and ceiling

src: https://youtu.be/DImI6l_0yiM?t=19



1: Generative Model

- Let’s have a closer look



1: Generative Model

- Place holders for floor and ceiling



1: Generative Model

- 4 random variables
- which are necessary and sufficient for describing our model



1: Generative Model

- Sampled from their prior distributions



1: Generative Model

- And stored to the trace



1: Generative Model

- Render 

- Noise and likelihood



1: Generative Model



2: Inference Model

Again

● Step by step



2: Inference Model

● Initialize your parameters



2: Inference Model

● Apply inference



2: Inference Model

● For 1000 iterations…



2: Inference Model

● Large changes



2: Inference Model

● Small changes



2: Inference Model

● With our choice of inference method (eg. Metropolis Hasting)



2: Inference Model

● And return final trace 

:height = 2.7
:z = 0.9
:pitch = 1.96
:roll = -0.39
:observation = xyz….



Summarized:

1. Define the parameters that describe your model (“Generative Model”)

2. For n iterations, apply inference (e.g. metropolis hasting)

3. Return parameter values which describe the observations best



Some questions..
Let’s see what you have learned

(and if you paid attention)



Question 1:

● Which picture represents Gen’s architecture? 

Generative 
Function

Model Compiler

Model Data

Inference Program

Result
Result

Inference
Engine

Data Model

2)1)



Question 2:

● If you decided to go for a different inference method, what part(s) of the code 
would you change?



Question 3:

● What is the use of the ‘Global change’ line? What may happen if it’s 
removed?



Conclusion:

Best practices for project

● Be prepared: learning curve is steep
● Do the tutorials on gen.dev
● Use visualisations while programming 
● Get familiar with the different inference algorithms

● Flexibility 
● Improved performance



Thank you for your attention!



Questions?


