]
TUDelft

Gen: A General-Purpose Probabilistic
Programming System with
Programmable Inference

By: Chrysanthos Kindynis & Kylian Kropf

Presentation timeline

Historically speaking: why was Gen needed
Technical flow

Practical code example

Quiz and conclusions

A\

%
TU Delft

Background

- MIT authors (2019):

Marco Cusmano-Towner
Feras Saad

Alexander Lew

Vikash Mansinghka

- Impact: 176 citations

H B Massachusetts
I I Institute of

Technology

%
TU Delft

High level concept

- Modelling flexibility

- Trade offs

- Inference flexibility
- Inference library
- Domain specific knowledge
- Custom methods

=> improved performance

- Database view
- Allows for taking care of technical steps automatically

%
TU Delft

Theoretical program flow

In Gen:

1. First, we define a generative model Result
2. Second, we write an inference program

3. Finally, we run the inference program together with data, I

and return the results Inference Program

Result

|

Model Data

Model Data

Traditional Gen

Trace

Traces are no longer just a passive historical record

It has an active role in our Probabilistic program, present in:

Arguments
Return statements

This supports the generalizability and flexibility of the language

@ChoiceMap: mapping from a set of addresses (A) to a set of values (V)

lllustration of code example we are trying to present

- Goal: Infer the orientation of the depth camera relative to the floor and ceiling

Input Video Virtual World Segmentation

%
TUDelft

src: https://youtu.be/DIml6l_0yiM7?t=19

1: Generative Model

- Let’s have a closer look

@gen function generative model()

floor = Plane([0.,0.,0.],[0.,0.,1.])
room_height = @trace(uniform(2.5, 3.0), :room_height)
ceiling = Plane([@., 0., room_height][0., 0., -1.])

objects = [floor, ceiling]

camera_z = @trace(uniform(0.2, 2.0), :z)
camera_location = {0., @., camera_z}
camera_pitch = @trace(uniform(..., ...), :pitch)
camera_roll= @trace(uniform(..., ...), :roll)

camera_rotation =

make_rotation_matrix(camera_pitch, 0., camera_roll)

depths = render(objects, camera_location, camera_rotation)

noise = 0.1

@trace(realsense_sensor(depths, noise), :observation)

end

1: Generative Model

- Place holders for floor and ceiling

floor = Plane([0.,0.,0.],[0.,0.,1.])
room_height = @trace(uniform(2.5, 3.0), :room_height)
ceiling = Plane([0., ©., room _height][©., 0., -1.])

objects = [floor, ceiling]

1: Generative Model

- 4 random variables
- which are necessary and sufficient for describing our model

room_height = @trace(uniform(2.5, 3.0), :room _height
ceiling = Plane([0., 0., room_height][@., 0., -1.]

objects = [floor, ceiling

camera_z = @trace(uniform(©0.2, 2.0), :z

camera_location = {0., ©@., camera_z]

camera_pitch = @trace(uniform(..., ...), :pitch

camera_roll= @trace(uniform(..., I ool L

1: Generative Model

Sampled from their prior distributions

room_height = @trace(uniform(2.5,
ceiling = Plane([©@., O.,

objects = [floor, ceiling]

camera_z = @trace(uniform(0.2, 2.0),

camera_location = {0.,

camera_pitch = @trace(uniform(.. .,

camera_roll= @trace(uniform(.. .,

camera_rotation =

:room_height)
room_height][0.,

camera_z |

1: Generative Model

- And stored to the trace

room_height = @trace(uniform(2.5, 3.0), :room_height)
ceiling = Plane([0©., 0., room _height][@©., 0., -1.])
objects = [floor, ceiling]

camera_z = @trace(uniform(0.2, 2.9), :z)
camera_location = {0., ©., camera_z]
camera_pitch = @trace(uniform(..., ...), :pitch)

camera_roll= @trace(uniform(..., ...)y =roll)

1: Generative Model

- Render

Create the image describing your parameters
depths = render(objects, camera_location, camera_rotation)

- Noise and likelihood

noise = 0.1
Likelihood that the parameters came from this observation
@trace(realsense_sensor(depths, noise), :observation)

1: Generative Model

@gen function generative_model()

floor = Plane([0.,0.,0.]1,[0.,0.,1.])

room_height = @trace(uniform(2.5, 3.0), :room_height)
ceiling = Plane([0., 0., room_height][0., 0., -1.])
objects = [floor, ceiling]

camera_z = @trace(uniform(0.2, 2.9), :z)
camera_location = {@., @., camera_z}

camera_pitch = @trace(uniform(..., ...), :pitch)
camera_roll= @trace(uniform(..., ...), :roll)
camera_rotation =

make_rotation_matrix(camera_pitch, 0., camera_roll)

depths = render(objects, camera_location, camera_rotation)

noise = 0.1

@trace(realsense_sensor(depths, noise), :observation)

end

2: Inference Model

#initialize trace with first observation
. frame = get frame(depth_camera)
Agaln constraints = Gen.choicemap((:observation, frame)
trace, = Gen.generate(generative model, (), constraints)
e Step by step

#MCMC moves

for iter=1:1000

Global change

trace, = Gen.mh(trace, Gen.select(:pitch, :roll, :z, :room_height))

Local changes

trace, = Gen.mh(trance, random_walk, (pi/64, :pitch))

trace, = Gen.mh(trance, random_walk, (pi/64, :roll))

trace, = Gen.mh(trance, random_walk, (0.05, :z))

trace, = Gen.mh(trance, random walk, (©.05, :room_height))
end

return trace

2: Inference Model

e |Initialize your parameters

Get the camera frame

frame = get frame(depth_camera)

choicemap: :observation address from now on contains our “frame".

constraints = Gen.choicemap((:observation, frame)

Initialization of parameters

trace, = Gen.generate(generative model, (), constraints)

2: Inference Model

e Apply inference

#MCMC moves
for iter=1:1000

Global change

trace, = Gen.mh(trace, Gen.select(:pitch, :roll, :z, :room_height))

Local changes

trace, = Gen.mh(trance, random walk, (pi/64, :pitch))

trace, = Gen.mh(trance, random walk, (pi/64, :roll))

trace, = Gen.mh(trance, random _walk, (©0.05, :z))

trace, = Gen.mh(trance, random walk, (©0.05, :room_height))
end

return trace

2: Inference Model

e For 1000 iterations...

#MCMC moves
for iter=1:1000

Global change
trace, = Gen.mh(trace, Gen.select(:pitch, :roll, :z, :room_height))

Local changes

trace, = Gen.mh(trance, random walk, (pi/64, :pitch))
trace, = Gen.mh(trance, random_walk, (pi/64, :roll))
trace, = Gen.mh(trance, random walk, (0.05, :z))

trace, = Gen.mh(trance, random walk, (©.05, :room_height))

end

2: Inference Model

Large changes

#MCMC moves
for iter=1:1000

Global change

trace, = Gen.mh(trace, Gen.select(:pitch, :roll, :z, :room_height))

Local changes

trace, = Gen.mh(trance,
trace, = Gen.mh(trance,
trace, = Gen.mh(trance,
trace, = Gen.mh(trance,

end

random walk, (pi/64, :pitch))
random walk, (pi/64, :roll))
random_walk, (©.05, :z))
random_walk, (©0.05, :room_height))

2: Inference Model

e Small changes
#MCMC moves
for iter=1:1000

Global change
trace, = Gen.mh(trace, Gen.select(:pitch, :roll, :z, :room_height))

Local changes

trace, = Gen.mh(trance, random_walk, (pi/64, :pitch))
trace, = Gen.mh(trance, random_walk, (pi/64, :roll))
trace, = Gen.mh(trance, random_walk, (0.05, :z))

trace, Gen.mh(trance, random_walk, (©.05, :room_height))

end

2: Inference Model

With our choice of inference method (eg. Metropolis Hasting)

#MCMC moves
for iter=1:1000

Global change

trace,

= Gen.mh

Local changes

trace,
trace,
trace,
trace,

end

Gen

Gen.
.mh
.mh

Gen
Gen

.mh

mh

(trace,

(trace,
(trace,
(trace,
(trace,

Gen.select(:pitch,

random_walk,
random_walk,
random_walk,
random_walk,

(pi/64,
(pi/64,
(0.05,
(0.05,

:roll, :z, :room_height))

:pitch))
:roll))

2
:room_height))

2: Inference Model

e And return final trace

#MCMC moves
for iter=1:1000

Global change

trace, = Gen.mh(trace, Gen.select(:pitch, :roll, :z, :room_height))
‘height = 2.7
2=0.9 # Local changes
:pitch = 1.96 trace, = Gen.mh(trace, random_walk, (pi/64, :pitch))
roll = -0.39 trace, = Gen.mh(trace, random walk, (pi/64, :roll))
:observation = xyz.... trace, = Gen.mh(trace, random walk, (.05, :z))

trace, = Gen.mh(trace, random walk, (©.05, :room_height))

end

return trace

Summarized:
1. Define the parameters that describe your model (“Generative Model”)
2. For niterations, apply inference (e.g. metropolis hasting)

3. Return parameter values which describe the observations best

%
TU Delft

Some questions..

Let's see what you have learned

(and if you paid attention)

Question 1:

e Which picture represents Gen’s architecture?

Result
I Result

Inference Program

|

Data Model

Model Data

Question 2:

e If you decided to go for a different inference method, what part(s) of the code

would you change?

#MCMC moves

for iter=1:1000

Global change

trace,

= Gen.mh(trace,

Local changes

trace,
trace,
trace,

trace,

end

Gen.
Gen.
Gen.

Gen.

return trace

mh(trace,
mh (trace,
mh(trace,

mh (trace,

Gen.select

random_walk,
random_walk,
random_walk,

random_walk,

:pitch, :roll, :z, :room_height

pi/64, :pitch))
pi/64, :roll

0.05, :z))

(0.05, :room_height

Question 3:

What is the use of the ‘Global change’ line? What may happen if it's

removed?

#MCMC moves

for iter=1:1000

Global change

= Gen.mh

trace,

Local changes

trace,
trace,
trace,

trace,

end

Gen.
Gen.
Gen.
Gen.

return trace

mh
mh
mh

mh

trace,

(trace,
(trace,
trace,

(trace,

Gen.select

random_walk,
random_walk,
random_walk,

random_walk,

:pitch, :roll, :z, :room_height

pi/64,
‘pi/64,

9.05,
(0.05,

:pitch))
:roll
s Z)

:room_height

Conclusion:

e Flexibility
e Improved performance

Best practices for project

e Be prepared: learning curve is steep

e Do the tutorials on gen.dev

e Use visualisations while programming

e Get familiar with the different inference algorithms

%
TU Delft

Thank you for your attention!

%
TU Delft

Questions?

%
TU Delft

