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Presentation timeline

1. Historically speaking: why was Gen needed
2. Technical flow
3. Practical code example
4. Quiz and conclusions



Background

- MIT authors (2019):
- Marco Cusmano-Towner
- Feras Saad
- Alexander Lew
- Vikash Mansinghka

- Impact: 176 citations



High level concept

- Modelling flexibility
- Trade offs 

- Database view
- Allows for taking care of technical steps automatically

- Inference flexibility
- Inference library
- Domain specific knowledge
- Custom methods

=> improved performance



Theoretical program flow

In Gen:

1. First, we define a generative model
2. Second, we write an inference program
3. Finally, we run the inference program together with data, 

and return the results
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Trace

- Traces are no longer just a passive historical record 
- It has an active role in our Probabilistic program, present in:

- Arguments 
- Return statements 

- This supports the generalizability and flexibility of the language

- @ChoiceMap: mapping from a set of addresses (A) to a set of values (V)



Illustration of code example we are trying to present

- Goal: Infer the orientation of the depth camera relative to the floor and ceiling

src: https://youtu.be/DImI6l_0yiM?t=19



1: Generative Model

- Let’s have a closer look



1: Generative Model

- Place holders for floor and ceiling



1: Generative Model

- 4 random variables
- which are necessary and sufficient for describing our model



1: Generative Model

- Sampled from their prior distributions



1: Generative Model

- And stored to the trace



1: Generative Model

- Render 

- Noise and likelihood



1: Generative Model



2: Inference Model

Again

● Step by step



2: Inference Model

● Initialize your parameters



2: Inference Model

● Apply inference



2: Inference Model

● For 1000 iterations…



2: Inference Model

● Large changes



2: Inference Model

● Small changes



2: Inference Model

● With our choice of inference method (eg. Metropolis Hasting)



2: Inference Model

● And return final trace 

:height = 2.7
:z = 0.9
:pitch = 1.96
:roll = -0.39
:observation = xyz….



Summarized:

1. Define the parameters that describe your model (“Generative Model”)

2. For n iterations, apply inference (e.g. metropolis hasting)

3. Return parameter values which describe the observations best



Some questions..
Let’s see what you have learned

(and if you paid attention)



Question 1:

● Which picture represents Gen’s architecture? 
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Question 2:

● If you decided to go for a different inference method, what part(s) of the code 
would you change?



Question 3:

● What is the use of the ‘Global change’ line? What may happen if it’s 
removed?



Conclusion:

Best practices for project

● Be prepared: learning curve is steep
● Do the tutorials on gen.dev
● Use visualisations while programming 
● Get familiar with the different inference algorithms

● Flexibility 
● Improved performance



Thank you for your attention!



Questions?


