Paper presentation:
Rethinking

Variational Inference for
Probabilistic Programs
with Stochastic Support

Aleksander Buszydlik, Karol Dobiczek

%
TUDelft

About the paper

Authors:

= Tim Reichelt
= Luke Ong
= Tom Rainforth

Published in:
NeurlPS 2022

Impact:
As of now, O citations

]
TUDelft

Rethinking Variational Inference for Probabilistic
Programs with Stochastic Support

Tim Reichelt Luke Ong* Tom Rainforth"
! University of Oxford
2 Nanyang Technological University, Singapore
{tin.reichelt, lo}@ce.ox.ac.uk rainforth@stats.ox.ac.uk

Abstract

We introduce Support Decomposition Vartational Inference (SDVI), a new varia-
tional inference (V1) approach for probabilistic programs with stochastic support.
Existing approaches to this problem rely on designing a single global variational
guide on a variable-by-varisble basis, while maintaining the stochastic control flow
of the original program. SDVI instead breaks the program down into sub-programs
with smn: support, bc(on: automatically building separate sub-guides for c:nh.
This I :ndsn in the jon of suitable vari

families, enabling, in twm, sub 1 imp in inference

1 Introduction

Probabilistic programming systems (PPSs) enable users to express probabilistic models with computer
programs and provide tols for inference. Many PPS, such as Stan [1] or PyMC3 [2], limit the
expressiveness of their language to ensure that the programs in their language always correspond
1o models with static support—i.e. the number of variables and their support do not vary between
program executions. In contrast, universal PPSs [3-11] can encode programs where the sequence of
variables itself—not just the variable val hanges between i leading to models with
stochastic support. These models have applications in numerous fields, such as natural language
processing [12], Bayesian Nonparametrics [13], and statistical phylogenetics [14]. A wide range of
simulator-based models similarly require such stochastic control flow [15-17].

The effectiveness of PPSs is heavily reliant on the underlying inference schemes they support.
Variational inference (V1) is one of the most popular such schemes, both in PPSs and more gen-
erally [18-20]. This popularity is due to its ability to use derivatives to scale to large datasets
and high-dimensional models [21-24], often providing much faster and more scalable inferences
compared to Monte Carlo approaches [25]. To provide the required derivatives, a number of modem
nnm.r\al PPSs—such as Pyro [5]. PmbTorch [26]. PyProb [15]. Gen [7]. and Turing [6]——0\3\2

27) bilities for programs with stochastic control flow. O
of the core aims behind these de\clopmcnls was to support VI schemes in such settings [5).

However, constructing appropriate variational families, typically known as guides in PPSs, can be
very challenging for problems with \lochasuc support, even for cxpcn users. This is because the
smuhasucny of the control flow induces di ities and complex d that are
difficult to remain faithful to and design ized for. Furth; while there
are a plethora of different automatic guide construction schemes for static support problems [18-20].
there is a lack of suitable schemes applicable to models with stochastic support. Consequently,
existing methods tend to give unreliable results in such settings, as we demonstrate in Figure |.

We argue that a significant factor of this shortfall is that standard peactice—for both manual and
automated methods—is to construct the guide on a variable-by-variable basis [28-31]. Namely,

36th Coaference on Neural Information Processing Systems (NearIPS 2022).

Background: static and stochastic support

* |nsimple terms, support is the set of values which can be taken by an RV
= Static support programs have:

= aconstant number of variables

= aconstant support for these variables
= Stochastic support programs may have:

= anumber of variables that varies between executions

= asequence of variables that varies between executions

= Today we are discussing Support Decomposition Variational Inference

]
TUDelft

What are the challenges of stochastic support?

1. Discontinuities and complex dependency structure of the PDF
2. Difficult design of parameterized approximations for those PDFs

3. Lack of appropriate techniques to construct guides (variational distributions)

]
TUDelft

Where do these discontinuities come from?

def model () :
x = sample("x", Normal(0, 1))
if x < 0:
z = sample("zl", Normal(-3, 1))
else:
z = sample("z2", Normal(3, 1))

sample ("a", Normal(z, 2), obs=2.0)

]
TUDelft

Now 1imagine...

def model2 () :
x = sample("x", Normal(0, 1))
if x < 0:
z = sample("zl", Poisson(|x]))
else:
y = sample("y", Normal (0, x))
z = sample("z2", Exponential(|y]))

sample ("a", Normal (x, z), obs=2.0)

y exists only in the else branch...
Quickly becomes a mess!

]
TUDelft

Let's consider an individual execution

def model2 () :

x = sample("x", Normal(0, 1)) - x = -0.50
if x < 0:

z = sample("zl", Poisson(|x])) -z = 1.00
else:

y = sample("y", Normal (0, x))
z = sample("z2", Exponential(|y]))

sample ("a", Normal (x, z), obs=2.0) - a = -0.80

]
TUDelft

This 1s actually a program with static support!

def model2A() :

x = sample("x", Normal(0, 1)) - x = -0.50
z = sample("zl", Poisson(|x]|)) -z = 1.00
sample ("a", Normal (x, z), obs=2.0) - a = -0.80

]
TUDelft

And so 1s this program!

]
TUDelft

def model2B() :
x = sample("x", Normal(0, 1))
y = sample("y", Normal (0, x))
z = sample("z2", Exponential(|y]|))

sample ("a", Normal(x, z), obs=2.0)

PN KON

0.67
0.20
0.30
0.50

Straight Line Programs (SLPs)

In simple terms, SLP is program consisting only of a sequence of basic operations

In other words no loops, branching, ...

Any program can be represented as a mixture of SLP densities:

model2 = o * model2A + P * model2B + y * model2C + ..

Which SLPs? We will come back to that question!

]
TUDelft

Decomposing a stochastic support PP

Each encountered sample and observe statement contributes to the density function:

n_ samples n observes
X y

V(@1iny) = H Fus (s|m;) H a, (y;10;)

]
TUDelft

Decomposing a stochastic support PP

Each encountered sample and observe statement contributes to the density function:

V(@1in,) =][far (il]] 9, (w5105
im1 =1

The density of the A" SLP is simply:

V(1) = 1 Z1n,, € Xi) V(T1imy)

]
TUDelft

Global and local ELBO
(QS)) q(x D) [l097<) lOg Q<xa Qb,)‘)]

]
TUDelft

Global and local ELBO

L(p, A) = Eq(asp) [logy(z) — log q(x; 9, N)]
Factorize the distribution for each SLP k:

33¢, ZQk 7¢k k)\

]
TUDelft

Global and local ELBO

L(p, A) = Eq(asp) [logy(z) — log q(x; 9, N)]
Factorize the distribution for each SLP k:

7¢7 ZQk 7¢k k)‘

Derive the global...
L(), A) = Eqn) [Lr(or) — log q(k; A))]

and the local ELBO

Ve (@)]

L =K, (z:6,) [0

]
TUDelft

Global and local ELBO

L(p, A) = Eq(asp) [logy(z) — log q(x; 9, N)]
Factorize the distribution for each SLP k:

7¢7 ZQk 7¢k k)‘

Derive the global...
L(),A) = Eqiny [Lr(or) — log q(k; A))]

and the local ELBO

Ve (@)]

Erldr) = Bam) [log qr(z; dr)

]
TUDelft

Discussion: Finding SLPs

How would you approach it?

]
TUDelft

Finding SLPs the trivial way

Sample the paths by running the simulation
Simple
Cheap

]
TUDelft

Finding SLPs the trivial way

Sample the paths by running the simulation
Simple
Cheap

Although there are drawbacks
= What are those?

]
TUDelft

Finding SLPs the trivial way

Sample the paths by running the simulation
Simple
Cheap

Although there are drawbacks
Not guaranteed to find all SLPs
We pay the same amount of resources to all SLPs

]
TUDelft

Finding SLPs the proper way

= Some SLPs might be more promising than others - focus on those;
= Frame the problem as cost optimization:

1. Givensome finiteresource T

2. Distribute it over each local ELBO

3. Find adistribution which maximizes global ELBO

= Take only those SLPs which are the most important

]
TUDelft

Last improvement — batching

When observations are conditionally independent we can load the data in batches
This leads to a technique authors call Stochastic-SDVI

Similar performance
Smaller disk requirements

]
TUDelft

Discussion: How does SDVI compare to DCC?

Similarities?
Differences?

= Anything else?

]
TUDelft

Experiment 1: Failure Modes 1

= In what ways do various approaches for VI can fail?

= Look at the following approaches for Variational Inference:
= SDVI (Support Decomposition Variational Inference, this paper)
= Pyro AutoGuide
= BBVI (guides generated on a variable-by-variable basis 1)

= Consider the following model, assume we observed y = 2

r~N(z,1), K, ifue(-5+K,—-4+ K]|forK =1,...,8

u ~ N(0,5%), 0, ifue (—o0,—4]
where Z =
y~N(z,1). 9, ifue(4,0)

]
TUDelft

1Similar to Automated Variational Inference in Probabilistic Programming (W3 L1 Paper 2)

Experiment 1: Failure Modes 2

]
TUDelft

5 PP s e -
e | T T e
5 lllllllllllllllllllllll
o 10—2_ !
% = Pyro AutoGuide
':»O_" = = BBVI
n e SDVI
107 —T— T Tl Tyl
10° 10 10°
Computational Cost
----------- - - - - - - - - - J
el AL T L L —
g 10 T
m -----------
—20- - logZ
10° 10 10°

Computational Cost

Detour:
Gaussian Mixture Models 1

= Assume the datais a mixture of a (finite)
set of Gaussian distributions

= We may not know the parameters
and the number of distributions

= Very expressive way to describe
distributions, also for clustering

]
TUDelft

Detour: Gaussian Mixture Models 2

Bayesian Gaussian mixture models with a Dirichlet process prior for yo = 0.01.

Gaussian mixture with a Dirichlet process prior for yo = 0.01 sampled with 2000 samples.

= o

]
TUDelft

image:
https://scikit-learn.org/stable/modules/mixture

Experiment 2: Challenging clustering 1

= How does SDVI compare to baselines on a challenging clustering task?

= Look at the following approaches for Variational Inference:
= SDVI (Support Decomposition Variational Inference, this paper)
S-SDVI (Stochastic SDVI, mini-batched SDVI)

= BBVI(guides generated on a variable-by-variable basis)
- DCC?

= Consider the following model, assume we have K = 5

K
K ~ Poisson(9) + 1; wup ~N(0,101) for k=1,...,K; y-~ Ezkle(uk,O.ll),

]
TUDelft

2From previous paper

Experiment 2: Challenging clustering 2

Method LPPD (1, x10°) ELBO (1, x10?%) MAP K

DCC —9842.90 + 3904.57 N/A 14, 11, 16, 14, 15
BBVI —2217.07 + 146.31 —8770.55 1+ 544.95 25,25, 25, 25, 25
SDVI 32.84 + 0.02 128.76 + 0.17 5.5,6,6.5
S-SDVI 32.80 + 0.02 128.63 + 0.22 5.5,6,5,6

]
TUDelft

Experiment 3: Challenging regression 1

How does SDVI compare to baselines on a challenging regression task?

Look at the following approaches for Variational Inference:
SDVI (Support Decomposition Variational Inference, this paper)
BBVI (guides generated on a variable-by-variable basis)
DCC

Consider Gaussian Process Kernels built (probabilistically) according to:

K — SE|RQ|PER|LIN |K x K | K + K.
0.2 0.2 0.2 0.2 0.1 0.1

]
TUDelft

Experiment 3: Challenging regression 2

. Observed Data

Held-Out Data
Method LPPD (1) ELBO (1)
DCC —58.92 + 32.47 N/A
BBVI —18.82 +1.20 —48.48 + 0.33

SDVI 2.05 +3.30 34.53 + 21.42

Number of Passengers

Month

]
TUDelft

Thank you for your attention!

Aleksander & Karol

