
Divide, Conquer, and Combine: a New Inference Strategy
for Probabilistic Programs with Stochastic Support
Yuan Zhou, Hongseok Yang, Yee Whye Teh, Tom Rainforth Proceedings of the 37th
International Conference on Machine Learning, PMLR 119:11534-11545, 2020.

Presented by: Bianca Cosma and Margot Pauëlsen | 25.09.2023

Introduction

2

● Stochastic variables lead to
variable dimensionality

● Model declaration is easy,
(automated) inference is
hard

● Goal of the paper: provide
stochastic support to wide
range of models

Figure adapted from Zhou et al.

Notation

Sample

The set of random variables ,

where has address , input (history) and density (prior)

Observe

The set of observed values ,

where has address , input and density (likelihood)

3

The posterior p(x | y) can be expressed as ,

where

Notation (continued)

4

joint density p(x, y)

marginal likelihood p(y)
(normalizing constant)

(prior) (likelihood)

Problems with other inference methods

● Rejection and importance sampling suffer ‘curse of dimensionality’

5

● Variational inference

○ needs specific knowledge, so at odds with automation

○ model often approximated by model with fixed support

● MCMC needs kernel to switch between configurations

○ Posterior may vary across configurations

○ It is difficult to switch from high density region to new configuration

Problems with other inference methods

6

Multimodal distribution image:
https://emcee.readthedocs.io/en/stable/t
utorials/moves/

Step 1: Divide

● Divide program in straight-line

sub-programs (SLPs)

● The individual programs are

disjoint (independent)

7

Step 2: Conquer

For each SLP k, we estimate, using any conventional inference approach:

The posterior:

p(x|y)

The marginal likelihood:
(evidence)

p(y)

8

Step 3: Combine

we want the posterior
p(x|y) for the entire
program

9

joint distributions p(x, y)for all SLPs 1:K

marginal likelihoods p(y) for
all SLPs 1:K

We can sum up disjoint events to get the joint probability

Step 3: Combine (continued)

10

Why can we just sum the independent SLPs?

for the joint distribution:

for the marginal likelihood:

Because the program supports are disjoint (and we
can sum up disjoint events to get the joint probability)

How do we find SLPs?

Static analysis doesn’t always work: sometimes there’s no upper bound on
the number of code paths

11

K ~ Poisson(10)

for k ∈ K:
w ~ N(µk , Σk)

… unbounded

Implementation details: finding SLPs at inference time
1. Run the program a number of times to

generate an initial set of SLPs

12

Initial set: S = {[#l1, #l4]}

Assume on #l1 we sample z0 = 0.4 > 0:
- so we jump to #l8
- we found another path
- update:

S = {[#l1, #l4], [#l1, #l8, #l9]}

2. At each iteration:
a. Perform local inference on an SLP (for

example, MCMC)
b. If we find another path, we update our set

which one?

Implementation details: resource allocation

13

utility function for
an SLP k

exploitation exploration

At each iteration, how do we choose an SLP to do local inference on?

Pick the one with the highest utility:
inversely proportional to the number of
times we have already performed inference

proportional to Zk
(likelihood of the SLP)

Experiments

Function induction: we want to estimate the function that generated our data

● the set of rules:

● why does it make sense to apply “Divide, Conquer and Combine”?

14

sample a * e + b * e

sample a sample b sample e

…

sample sin(a * e)

sample a sample e

…

Experiments

Function induction: we want to estimate the function that generated our data

15

(importance sampling) (MCMC: random-walk Metropolis Hastings)(Divide, Conquer and Combine)

