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Introduction
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● Stochastic variables lead to 
variable dimensionality

● Model declaration is easy, 
(automated) inference is 
hard

● Goal of the paper: provide 
stochastic support to wide 
range of models

Figure adapted from Zhou et al. 



Notation

Sample

The set of random variables                                                 ,  

where       has address       , input (history)       and density (prior)

Observe

The set of observed values                                               ,

where       has address       , input        and density (likelihood)       
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The posterior p(x | y) can be expressed as                                     ,

where

  

Notation (continued)

4

joint density p(x, y)

marginal likelihood p(y)
(normalizing constant)

(prior) (likelihood)



Problems with other inference methods

● Rejection and importance sampling suffer ‘curse of dimensionality’
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● Variational inference 

○ needs specific knowledge, so at odds with automation

○ model often approximated by model with fixed support

● MCMC needs kernel to switch between configurations

○ Posterior may vary across configurations

○ It is difficult to switch from high density region to new configuration



Problems with other inference methods
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Multimodal distribution image: 
https://emcee.readthedocs.io/en/stable/t
utorials/moves/



Step 1: Divide

● Divide program in straight-line 

sub-programs (SLPs)

● The individual programs are 

disjoint (independent)
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Step 2: Conquer 

For each SLP k, we estimate, using any conventional inference approach:

The posterior:

p(x|y)

The marginal likelihood:
(evidence)

p(y)
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Step 3: Combine

we want the posterior 
p(x|y) for the entire 
program
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joint distributions p(x, y)for all SLPs 1:K

marginal likelihoods p(y) for 
all SLPs 1:K

We can sum up disjoint events to get the joint probability



Step 3: Combine (continued)
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Why can we just sum the independent SLPs?

for the joint distribution:

for the marginal likelihood:

Because the program supports are disjoint (and we 
can sum up disjoint events to get the joint probability)



How do we find SLPs?

Static analysis doesn’t always work: sometimes there’s no upper bound on 
the number of code paths
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K ~ Poisson(10)

for k ∈ K:
w ~ N(µk , Σk)

… unbounded



Implementation details: finding SLPs at inference time
1. Run the program a number of times to 

generate an initial set of SLPs
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Initial set: S = {[#l1, #l4]}

Assume on #l1 we sample z0 = 0.4 > 0:
- so we jump to #l8
- we found another path
- update:

S = {[#l1, #l4], [#l1, #l8, #l9]}

2. At each iteration:
a. Perform local inference on an SLP (for 

example, MCMC)
b. If we find another path, we update our set

which one?



Implementation details: resource allocation
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utility function for 
an SLP k

exploitation exploration

At each iteration, how do we choose an SLP to do local inference on?

Pick the one with the highest utility:
inversely proportional to the number of 
times we have already performed inference

proportional to Zk 
(likelihood of the SLP)



Experiments

Function induction: we want to estimate the function that generated our data

● the set of rules:

● why does it make sense to apply “Divide, Conquer and Combine”?
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sample a * e + b * e

sample a sample b sample e

…

sample sin(a * e)

sample a sample e

…



Experiments

Function induction: we want to estimate the function that generated our data
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(importance sampling) (MCMC: random-walk Metropolis Hastings)(Divide, Conquer and Combine)


