
CS4340: Probabilistic Programming Seminar
Lecture 3

Recap of the previous lecture

• Probabilistic programs are

• A powerful modelling tool

• Programs with two special statements: sample and observe

Recap of the previous lecture

p(x, y) =
T

∏
t=1

fat
(xt |x1:t−1)

N

∏
n=1

gn(yn |x1:τ(n))

“Prior” probs
probabilities of sample “Likelihood” probs

probabilities of observe

function probabilisticHelloWorld():

 var coin1 = sample(Bernoulli(0.5))
 var coin2 = sample(Bernoulli(0.5))
 var coin3 = sample(Bernoulli(0.5))
 observe(coin2 == 1)

 return coin1 + coin2 + coin3
end

This lecture

How do we calculate efficiently?p(x, y)

This lecture

How do we calculate efficiently?p(x, y)

Importance sampling

Metropolis-Hastings MCMC

Particle filtering

Probabilistic inference

function probabilisticHelloWorld():

 var coin1 = sample(Bernoulli(0.5))
 var coin2 = sample(Bernoulli(0.5))
 var coin3 = sample(Bernoulli(0.5))
 observe(coin2 == 1)

 return coin1 + coin2 + coin3
end

This lecture

How do we calculate efficiently?p(x, y)

Importance sampling

Metropolis-Hastings MCMC

Particle filtering

Probabilistic inference
Intuition

Probabilistic inference

function probabilisticHelloWorld():

 var coin1 = sample(Bernoulli(0.5))
 var coin2 = sample(Bernoulli(0.5))
 var coin3 = sample(Bernoulli(0.5))
 observe(coin2 == 1)

 return coin1 + coin2 + coin3
end

Probabilistic inference: Enumeration

c1 ~ sample(Bernoulli(0.6))
c2 ~ sample(Bernoulli(0.6))
c3 ~ sample(Bernoulli(0.6))

return c1 + c2 + c3

Probabilistic inference: Enumeration

c1 ~ sample(Bernoulli(0.6))
c2 ~ sample(Bernoulli(0.6))
c3 ~ sample(Bernoulli(0.6))

return c1 + c2 + c3

c1

Probabilistic inference: Enumeration

c1 ~ sample(Bernoulli(0.6))
c2 ~ sample(Bernoulli(0.6))
c3 ~ sample(Bernoulli(0.6))

return c1 + c2 + c3

c1

c2 c2

1 0

Probabilistic inference: Enumeration

c1 ~ sample(Bernoulli(0.6))
c2 ~ sample(Bernoulli(0.6))
c3 ~ sample(Bernoulli(0.6))

return c1 + c2 + c3

c1

c2 c2

1 0

c3 c3

1 0

c3 c3

1 0

Probabilistic inference: Enumeration

c1 ~ sample(Bernoulli(0.6))
c2 ~ sample(Bernoulli(0.6))
c3 ~ sample(Bernoulli(0.6))

return c1 + c2 + c3

c1

c2 c2

1 0

c3 c3

1 0

c3 c3

1 0

1 0 1 0 1 0 1 0

Probabilistic inference: Enumeration

c1 ~ sample(Bernoulli(0.6))
c2 ~ sample(Bernoulli(0.6))
c3 ~ sample(Bernoulli(0.6))

return c1 + c2 + c3

c1

c2 c2

1 0

c3 c3

1 0

c3 c3

1 0

1 0 1 0 1 0 1 0

3 2 2 1 2 1 1 0

Probabilistic inference: Enumeration

c1 ~ sample(Bernoulli(0.6))
c2 ~ sample(Bernoulli(0.6))
c3 ~ sample(Bernoulli(0.6))

return c1 + c2 + c3

c1

c2 c2

1 0

c3 c3

1 0

c3 c3

1 0

1 0 1 0 1 0 1 0

3 2 2 1 2 1 1 0
 0.63

0.40
 0.62

0.41
 0.62

0.41
 0.61

0.42
 0.62

0.41
 0.61

0.42
 0.61

0.42
 0.60

0.43

Probabilistic inference: Enumeration

c1 ~ sample(Bernoulli(0.6))
c2 ~ sample(Bernoulli(0.6))
c3 ~ sample(Bernoulli(0.6))

return c1 + c2 + c3

c1

c2 c2

1 0

c3 c3

1 0

c3 c3

1 0

1 0 1 0 1 0 1 0

3 2 2 1 2 1 1 0

0.216 0.144 0.144 0.1440.096 0.096 0.096 0.064

Probabilistic inference: Enumeration

c1 ~ sample(Bernoulli(0.6))
c2 ~ sample(Bernoulli(0.6))
c3 ~ sample(Bernoulli(0.6))

return c1 + c2 + c3

c1

c2 c2

1 0

c3 c3

1 0

c3 c3

1 0

1 0 1 0 1 0 1 0

3 2 2 1 2 1 1 0

0.216 0.144 0.144 0.1440.096 0.096 0.096 0.0641.0 =

Probabilistic inference: Enumeration

c1 ~ sample(Bernoulli(0.6))
c2 ~ sample(Bernoulli(0.6))
c3 ~ sample(Bernoulli(0.6))

return c1 + c2 + c3

c1

c2 c2

1 0

c3 c3

1 0

c3 c3

1 0

1 0 1 0 1 0 1 0

3 2 2 1 2 1 1 0

0.216 0.144 0.144 0.1440.096 0.096 0.096 0.0641.0 =

Probabilistic inference: Rules of inference

c1

c2 c2

1 0

c3 c3

1 0

c3 c3

1 0

1 0 1 0 1 0 1 0

3 2 2 1 2 1 1 0

0.216 0.144 0.144 0.1440.096 0.096 0.096 0.064

c1 ~ sample(Bernoulli(0.6))
c2 ~ sample(Bernoulli(0.6))
c3 ~ sample(Bernoulli(0.6))

return c1 + c2 + c3

Probabilistic inference: Rules of inference

c1

c2 c2

1 0

c3 c3

1 0

c3 c3

1 0

1 0 1 0 1 0 1 0

3 2 2 1 2 1 1 0

0.216 0.144 0.144 0.1440.096 0.096 0.096 0.064

Product rule:
Probs of random choices multiply

c1 ~ sample(Bernoulli(0.6))
c2 ~ sample(Bernoulli(0.6))
c3 ~ sample(Bernoulli(0.6))

return c1 + c2 + c3

Probabilistic inference: Rules of inference

c1

c2 c2

1 0

c3 c3

1 0

c3 c3

1 0

1 0 1 0 1 0 1 0

3 2 2 1 2 1 1 0

0.216 0.144 0.144 0.1440.096 0.096 0.096 0.064

Product rule:
Probs of random choices multiply

c1 ~ sample(Bernoulli(0.6))
c2 ~ sample(Bernoulli(0.6))
c3 ~ sample(Bernoulli(0.6))

return c1 + c2 + c3

Probabilistic inference: Rules of inference

c1

c2 c2

1 0

c3 c3

1 0

c3 c3

1 0

1 0 1 0 1 0 1 0

3 2 2 1 2 1 1 0

0.216 0.144 0.144 0.1440.096 0.096 0.096 0.064

Product rule:
Probs of random choices multiply

Sum rule:
Probs of alternatives add

c1 ~ sample(Bernoulli(0.6))
c2 ~ sample(Bernoulli(0.6))
c3 ~ sample(Bernoulli(0.6))

return c1 + c2 + c3

A few exercises

A ~ sample(Bernoulli(0.5))
B ~ sample(Bernoulli(0.5))
C = [A, B]

return C

Probability of C = [true, false] ?

A few exercises

A ~ sample(Bernoulli(0.5))
B ~ sample(A ? Bernoulli(0.3) : Bernoulli(0.7))
C = [A, B]

return C

Probability of C = [true, false] ?

A few exercises

C = sample(Bernoulli(0.5)) || sample(Bernoulli(0.5))

return C

Probability of C = true ?

Probabilistic inference: What if there are many choices?

c1 ~ sample(Bernoulli(0.6))
c2 ~ sample(Bernoulli(0.6))
c3 ~ sample(Bernoulli(0.6))
……
c20 ~ sample(Bernoulli(0.6))
c21 ~ sample(Bernoulli(0.6))

return sum(c1 to c21)

Probabilistic inference: What if there are many choices?

c1 ~ sample(Bernoulli(0.6))
c2 ~ sample(Bernoulli(0.6))
c3 ~ sample(Bernoulli(0.6))
……
c20 ~ sample(Bernoulli(0.6))
c21 ~ sample(Bernoulli(0.6))

return sum(c1 to c21)

Too many choices to consistently explore

Probabilistic inference: What if there are many choices?

c1 ~ sample(Bernoulli(0.6))
c2 ~ sample(Bernoulli(0.6))
c3 ~ sample(Bernoulli(0.6))
……
c20 ~ sample(Bernoulli(0.6))
c21 ~ sample(Bernoulli(0.6))

return sum(c1 to c21)

Too many choices to consistently explore

We have to approximate: find a representative subset
 of executions

Probabilistic inference: What if there are many choices?

c1 ~ sample(Bernoulli(0.6))
c2 ~ sample(Bernoulli(0.6))
c3 ~ sample(Bernoulli(0.6))
……
c20 ~ sample(Bernoulli(0.6))
c21 ~ sample(Bernoulli(0.6))

return sum(c1 to c21)

Too many choices to consistently explore

We have to approximate: find a representative subset
 of executions

We approximate with a fixed amount of executions

Probabilistic inference: What if there are many choices?

c1 ~ sample(Bernoulli(0.6))
c2 ~ sample(Bernoulli(0.6))
c3 ~ sample(Bernoulli(0.6))
……
c20 ~ sample(Bernoulli(0.6))
c21 ~ sample(Bernoulli(0.6))

return sum(c1 to c21)

Too many choices to consistently explore

We have to approximate: find a representative subset
 of executions

We approximate with a fixed amount of executions

We don’t ‘care equally about all executions:
 We care about likely outcome more

Probabilistic inference: What if there are many choices?
Strategy: order (partial!) executions according to the probabilities of choices

Probabilistic inference: What if there are many choices?
Strategy: order (partial!) executions according to the probabilities of choices

c1

Probabilistic inference: What if there are many choices?
Strategy: order (partial!) executions according to the probabilities of choices

c1
p(c1=1) = 0.6 p(c1=0) = 0.4

Probabilistic inference: What if there are many choices?
Strategy: order (partial!) executions according to the probabilities of choices

c1
p(c1=1) = 0.6 p(c1=0) = 0.4

Probabilistic inference: What if there are many choices?
Strategy: order (partial!) executions according to the probabilities of choices

c1

c2

p(c1=1, c2=1) = 0.36 p(c1,c2) = 0.24

p(c1=1) = 0.6 p(c1=0) = 0.4

Probabilistic inference: What if there are many choices?
Strategy: order (partial!) executions according to the probabilities of choices

c1

c2

p(c1=1, c2=1) = 0.36 p(c1,c2) = 0.24

p(c1=1) = 0.6 p(c1=0) = 0.4

Probabilistic inference: What if there are many choices?
Strategy: order (partial!) executions according to the probabilities of choices

c1

c2

p(c1=1, c2=1) = 0.36 p(c1,c2) = 0.24

c2

0.24 0.16

p(c1=1) = 0.6 p(c1=0) = 0.4

Probabilistic inference: What if there are many choices?
Strategy: order (partial!) executions according to the probabilities of choices

c1

c2

p(c1=1, c2=1) = 0.36 p(c1,c2) = 0.24

c2

0.24 0.16

p(c1=1) = 0.6 p(c1=0) = 0.4

Probabilistic inference: What if there are many choices?
Strategy: order (partial!) executions according to the probabilities of choices

c1

c2

p(c1=1, c2=1) = 0.36 p(c1,c2) = 0.24

c2

0.24 0.16

c3

0.216 0.144

p(c1=1) = 0.6 p(c1=0) = 0.4

Probabilistic inference: What if there are many choices?
Strategy: order (partial!) executions according to the probabilities of choices

c1

c2

p(c1=1, c2=1) = 0.36 p(c1,c2) = 0.24

c2

0.24 0.16

c3

0.216 0.144

p(c1=1) = 0.6 p(c1=0) = 0.4

Continue until we collect K executions then normalise

Conditioning:

c1 ~ sample(Bernoulli(0.6))
c2 ~ sample(Bernoulli(0.6))
c3 ~ sample(Bernoulli(0.6))

observe(c2 == 1)

return c1 + c2 + c3

c1

c2 c2

1 0

c3 c3

1 0

c3 c3

1 0

1 0 1 0 1 0 1 0

3 2 2 1 2 1 1 0

0.216 0.144 0.144 0.1440.096 0.096 0.096 0.064

Conditioning:

c1 ~ sample(Bernoulli(0.6))
c2 ~ sample(Bernoulli(0.6))
c3 ~ sample(Bernoulli(0.6))

observe(c2 == 1)

return c1 + c2 + c3

c1

c2 c2

1 0

c3 c3

1 0

c3 c3

1 0

1 0 1 0 1 0 1 0

3 2 2 1 2 1 1 0

0.216 0.144 0.144 0.1440.096 0.096 0.096 0.064

reject violating executions

Conditioning:

c1

c2 c2

1 0

c3 c3

1 0

c3 c3

1 0

1 0 1 0 1 0 1 0

3 2 2 1 2 1 1 0

0.216 0.144 0.144 0.1440.096 0.096 0.096 0.064

reject violating executions

P(A = a |B = b) =
P(A = a, B = b)

P(B = b)

Valid executions do not sum to 1 anymore

We need to adjust the probabilities
 according to the Bayes theorem

Probabilistic programs with continuous distributions

 ~ sample(Normal(0.5, 1))

c1 ~ sample(Bernoulli())
c2 ~ sample(Bernoulli())
c3 ~ sample(Bernoulli())

return c1 + c2 + c3

λ

λ
λ
λ

λ

Probabilistic programs with continuous distributions

 ~ sample(Normal(0.5, 1))

c1 ~ sample(Bernoulli())
c2 ~ sample(Bernoulli())
c3 ~ sample(Bernoulli())

return c1 + c2 + c3

λ

λ
λ
λ

λ

Probabilistic programs with continuous distributions

 ~ sample(Normal(0.5, 1))

c1 ~ sample(Bernoulli())
c2 ~ sample(Bernoulli())
c3 ~ sample(Bernoulli())

return c1 + c2 + c3

λ

λ
λ
λ

λ

Infinite number of values

Probabilistic programs with continuous distributions

c1 ~ sample(Bernoulli())
c2 ~ sample(Bernoulli())

 ~ sample(Normal(c1+c2, 0.1))

observe(== 2)

return c1 + c2 + c3

λ
λ

λ

λ

Probabilistic programs with continuous distributions

c1 ~ sample(Bernoulli())
c2 ~ sample(Bernoulli())

 ~ sample(Normal(c1+c2, 0.1))

observe(== 2)

return c1 + c2 + c3

λ
λ

λ

λ

c1 ~ sample(Bernoulli())
c2 ~ sample(Bernoulli())

 ~ sample(Normal(c1+c2, 0.1))

observe(, Normal(2, 1))

return c1 + c2 + c3

λ
λ

λ

λ

Probabilistic programs with continuous distributions

c1 ~ sample(Bernoulli())
c2 ~ sample(Bernoulli())

 ~ sample(Normal(c1+c2, 0.1))

observe(== 2)

return c1 + c2 + c3

λ
λ

λ

λ

c1 ~ sample(Bernoulli())
c2 ~ sample(Bernoulli())

 ~ sample(Normal(c1+c2, 0.1))

observe(, Normal(2, 1))

return c1 + c2 + c3

λ
λ

λ

λ

Probability that value is an observation from the distribution Normal(2,1)λ

Probabilistic programs with continuous distributions

c1 ~ sample(Bernoulli(0.6))
c2 ~ sample(Bernoulli(0.4))

 ~ sample(Normal(c1+c2, 0.1))

observe(, Normal(2, 1))

return c1 + c2 + c3

λ

λ

Probabilistic programs with continuous distributions

c1 ~ sample(Bernoulli(0.6))
c2 ~ sample(Bernoulli(0.4))

 ~ sample(Normal(c1+c2, 0.1))

observe(, Normal(2, 1))

return c1 + c2 + c3

λ

λ

c1
1 0

Probabilistic programs with continuous distributions

c1 ~ sample(Bernoulli(0.6))
c2 ~ sample(Bernoulli(0.4))

 ~ sample(Normal(c1+c2, 0.1))

observe(, Normal(2, 1))

return c1 + c2 + c3

λ

λ

c1
1 0

c2 c2

1 10 0

Probabilistic programs with continuous distributions

c1 ~ sample(Bernoulli(0.6))
c2 ~ sample(Bernoulli(0.4))

 ~ sample(Normal(c1+c2, 0.1))

observe(, Normal(2, 1))

return c1 + c2 + c3

λ

λ

c1
1 0

c2 c2

1 10 0

λ λ λ λ

2.34 1.07 0.92 0.03

Probabilistic programs with continuous distributions

c1 ~ sample(Bernoulli(0.6))
c2 ~ sample(Bernoulli(0.4))

 ~ sample(Normal(c1+c2, 0.1))

observe(, Normal(2, 1))

return c1 + c2 + c3

λ

λ

c1
1 0

c2 c2

1 10 0

λ λ λ λ

2.34 1.07 0.92 0.03

0.6

0.4

p(2.34; Normal(2,0.1))

Desiderata for general inference techniques

General inference technique: doesn’t care what is in the program

• All programming constructs (loops, conditions, …)
• All distributions (continuous and discrete)
• Finite and infinite distribution traces

Probabilistic inference
Grand tour

Preliminaries

 ~ sample(Normal(0.5, 1))

c1 ~ sample(Bernoulli())
c2 ~ sample(Bernoulli())
c3 ~ sample(Bernoulli())

observe(c1+c2+c3, Dirac(2))

return

λ

λ
λ
λ

λ

Preliminaries

 ~ sample(Normal(0.5, 1))

c1 ~ sample(Bernoulli())
c2 ~ sample(Bernoulli())
c3 ~ sample(Bernoulli())

observe(c1+c2+c3, Dirac(2))

return

λ

λ
λ
λ

λ Program

Preliminaries

 ~ sample(Normal(0.5, 1))

c1 ~ sample(Bernoulli())
c2 ~ sample(Bernoulli())
c3 ~ sample(Bernoulli())

observe(c1+c2+c3, Dirac(2))

return

λ

λ
λ
λ

λ Program

Probabilistic choice

Preliminaries

 ~ sample(Normal(0.5, 1))

c1 ~ sample(Bernoulli())
c2 ~ sample(Bernoulli())
c3 ~ sample(Bernoulli())

observe(c1+c2+c3, Dirac(2))

return

λ

λ
λ
λ

λ Program

Probabilistic choice

Observations

Preliminaries

 ~ sample(Normal(0.5, 1))

c1 ~ sample(Bernoulli())
c2 ~ sample(Bernoulli())
c3 ~ sample(Bernoulli())

observe(c1+c2+c3, Dirac(2))

return

λ

λ
λ
λ

λ Program

Probabilistic choice

Observations

Outcome

Preliminaries

 ~ sample(Normal(0.5, 1))

c1 ~ sample(Bernoulli())
c2 ~ sample(Bernoulli())
c3 ~ sample(Bernoulli())

observe(c1+c2+c3, Dirac(2))

return

λ

λ
λ
λ

λ Program

Probabilistic choice

Observations

Trace: a state of all probabilistic
choices in a program

c1: 0
c2 : 1
c3 : 0

λ : 0.43

Outcome

Monte Carlo estimation

Randomly simulate a process

P(desired outcome) = E[desired outcome]

 =
simulations with desired outcome

all simulations

Monte Carlo estimation

Randomly simulate a process

P(desired outcome) = E[desired outcome]

 =
simulations with desired outcome

all simulations

π = 4
area circle

area square
= 4

inner

total

Monte Carlo estimation

Randomly simulate a process

P(desired outcome) = E[desired outcome]

 =
simulations with desired outcome

all simulations

π = 4
area circle

area square
= 4

inner

total

Monte Carlo estimation

Randomly simulate a process

P(desired outcome) = E[desired outcome]

 =
simulations with desired outcome

all simulations

π = 4
area circle

area square
= 4

inner

total

Monte Carlo estimation

Randomly simulate a process

P(desired outcome) = E[desired outcome]

 =
simulations with desired outcome

all simulations

π = 4
area circle

area square
= 4

inner

total

Monte Carlo estimation

Randomly simulate a process

P(desired outcome) = E[desired outcome]

 =
simulations with desired outcome

all simulations

π = 4
area circle

area square
= 4

inner

total

Monte Carlo estimation

Randomly simulate a process

P(desired outcome) = E[desired outcome]

 =
simulations with desired outcome

all simulations

π = 4
area circle

area square
= 4

inner

total

Monte Carlo estimation

Randomly simulate a process

P(desired outcome) = E[desired outcome]

 =
simulations with desired outcome

all simulations

π = 4
area circle

area square
= 4

inner

total

Monte Carlo estimation

Randomly simulate a process

P(desired outcome) = E[desired outcome]

 =
simulations with desired outcome

all simulations

π = 4
area circle

area square
= 4

inner

total

Monte Carlo estimation

Randomly simulate a process

P(desired outcome) = E[desired outcome]

 =
simulations with desired outcome

all simulations

π = 4
area circle

area square
= 4

inner

total

Monte Carlo estimation

Randomly simulate a process

P(desired outcome) = E[desired outcome]

 =
simulations with desired outcome

all simulations

π = 4
area circle

area square
= 4

inner

total

Monte Carlo estimation

Randomly simulate a process

P(desired outcome) = E[desired outcome]

 =
simulations with desired outcome

all simulations

π = 4
area circle

area square
= 4

inner

total

Monte Carlo estimation

Randomly simulate a process

P(desired outcome) = E[desired outcome]

 =
simulations with desired outcome

all simulations

π = 4
area circle

area square
= 4

inner

total

Monte Carlo estimation

Randomly simulate a process

P(desired outcome) = E[desired outcome]

 =
simulations with desired outcome

all simulations

π = 4
area circle

area square
= 4

inner

total

Monte Carlo estimation

Randomly simulate a process

P(desired outcome) = E[desired outcome]

 =
simulations with desired outcome

all simulations

π = 4
area circle

area square
= 4

inner

total

Running example

Measure a heat source in a factory with 3 different sensors

heat ~ sample(Normal(56,10))

sensor1 ~ sample(Normal(heat,3))

sensor2 ~ sample(Normal(heat,5))

sensor3 ~ sample(Normal(heat,5))

observe(sensor2, Normal(43,2))

return heat

Probabilistic inference
Importance sampling

Importance sampling

Execute the probabilistic program N times

Treat the distribution over outcomes as the empirical distribution

heat ~ sample(Normal(56,10))

sensor1 ~ sample(Normal(heat,3))

sensor2 ~ sample(Normal(heat,5))

sensor3 ~ sample(Normal(heat,5))

observe(sensor2, Normal(43,2))

return heat

Importance sampling

Execute the probabilistic program N times

Treat the distribution over outcomes as the empirical distribution

56

57

52

54

56

heat ~ sample(Normal(56,10))

sensor1 ~ sample(Normal(heat,3))

sensor2 ~ sample(Normal(heat,5))

sensor3 ~ sample(Normal(heat,5))

observe(sensor2, Normal(43,2))

return heat

Importance sampling

Execute the probabilistic program N times

Treat the distribution over outcomes as the empirical distribution

56

57

52

54

56

45

47

43

37

45

heat ~ sample(Normal(56,10))

sensor1 ~ sample(Normal(heat,3))

sensor2 ~ sample(Normal(heat,5))

sensor3 ~ sample(Normal(heat,5))

observe(sensor2, Normal(43,2))

return heat

Importance sampling

Execute the probabilistic program N times

Treat the distribution over outcomes as the empirical distribution

56

57

52

54

56

45

47

43

37

45

62

54

62

68

62

heat ~ sample(Normal(56,10))

sensor1 ~ sample(Normal(heat,3))

sensor2 ~ sample(Normal(heat,5))

sensor3 ~ sample(Normal(heat,5))

observe(sensor2, Normal(43,2))

return heat

Importance sampling

Execute the probabilistic program N times

Treat the distribution over outcomes as the empirical distribution

56

57

52

54

56

45

47

43

37

45

62

54

62

68

62

heat ~ sample(Normal(56,10))

sensor1 ~ sample(Normal(heat,3))

sensor2 ~ sample(Normal(heat,5))

sensor3 ~ sample(Normal(heat,5))

observe(sensor2, Normal(43,2))

return heat

48

56

52

46

48

Importance sampling
Samples obtained by executing a program are from p(heat) not p(heat | sensor2 = 43) !

56

57

52

54

56

45

47

43

37

45

62

54

62

68

62

48

56

52

46

48

(1) (2) (3) (4)

Importance sampling
Samples obtained by executing a program are from p(heat) not p(heat | sensor2 = 43) !

56

57

52

54

56

45

47

43

37

45

62

54

62

68

62

48

56

52

46

48

We can fix this by weighting each execution
proportionally to how much it agrees with
observe(sensor2, Normal(43,2))

(1) (2) (3) (4)

Importance sampling
Samples obtained by executing a program are from p(heat) not p(heat | sensor2 = 43) !

56

57

52

54

56

45

47

43

37

45

62

54

62

68

62

48

56

52

46

48

We can fix this by weighting each execution
proportionally to how much it agrees with
observe(sensor2, Normal(43,2))

heat = 48
sensor2 = 52
W = p(sensor2 = 52; Normal(43,2))

4

4

4

(1) (2) (3) (4)

Importance sampling
Samples obtained by executing a program are from p(heat) not p(heat | sensor2 = 43) !

56

57

52

54

56

45

47

43

37

45

62

54

62

68

62

48

56

52

46

48

We can fix this by weighting each execution
proportionally to how much it agrees with
observe(sensor2, Normal(43,2))

heat = 48
sensor2 = 52
W = p(sensor2 = 52; Normal(43,2))

4

4

4

W = p(sensor2 = 62; Normal(43,2))3

(1) (2) (3) (4)

Importance sampling
Samples obtained by executing a program are from p(heat) not p(heat | sensor2 = 43) !

56

57

52

54

56

45

47

43

37

45

62

54

62

68

62

48

56

52

46

48

We can fix this by weighting each execution
proportionally to how much it agrees with
observe(sensor2, Normal(43,2))

heat = 48
sensor2 = 52
W = p(sensor2 = 52; Normal(43,2))

4

4

4

W = p(sensor2 = 62; Normal(43,2))3

(1) (2) (3) (4)

p(outcome) = i Wi

∑L
k=1 Wk

Probability of any
outcome i becomes:

Importance sampling: why can we re-weight?

Discrete and continuous expectations

Conditional on another variable

Importance sampling: why can we re-weight?

Sidestep sampling from the posterior p(heat | sensor2 = 43) entirely,
 and draw from some proposal distribution q(heat) instead

Any distribution that is easy to sample from

Instead of computing an expectation with respect to p(heat | sensor2),
 We compute an expectation with respect to q(heat)

Importance sampling: why can we re-weight?

We define an “importance weight” W(x) =
p(x |y)
q(x)

Then with ~ xi q(x)

Expectations are now computed using weighted samples from ,
 instead of unweighted samples from

q(x)
p(x |y)

Importance sampling: why can we re-weight?

One problem left: we cannot evaluate the weight just yet

W(x) =
p(x |y)
q(x)

We did all this to avoid calculating this term

But we can evaluate it up to a constant

w(x) =
p(x, y)
q(x)

Approximation

Importance sampling: why can we re-weight?

We already have a very simple proposal distribution we know how to sample from:
 the prior p(x)

Importance sampling: why can we re-weight?

We already have a very simple proposal distribution we know how to sample from:
 the prior p(x)

The algorithm then resembles the rejection sampling algorithm, except of sampling
 both the latest and the observed variables, we only sample the latent ones

Importance sampling: why can we re-weight?

We already have a very simple proposal distribution we know how to sample from:
 the prior p(x)

The algorithm then resembles the rejection sampling algorithm, except of sampling
 both the latest and the observed variables, we only sample the latent ones

Then, instead of a “hard” rejection step, we use the values of the latent variables and that
 data to assign “soft” weights to the sampled values

Properties of importance sampling

General inference technique: doesn’t care what is in the program

• All programming constructs (loops, conditions, …)
• All distributions (continuous and discrete)
• Finite and infinite distribution traces

Properties of importance sampling

General inference technique: doesn’t care what is in the program

• All programming constructs (loops, conditions, …)
• All distributions (continuous and discrete)
• Finite and infinite distribution traces

Properties of importance sampling

General inference technique: doesn’t care what is in the program

• All programming constructs (loops, conditions, …)
• All distributions (continuous and discrete)
• Finite and infinite distribution traces

Properties of importance sampling

General inference technique: doesn’t care what is in the program

• All programming constructs (loops, conditions, …)
• All distributions (continuous and discrete)
• Finite and infinite distribution traces

Properties of importance sampling

Importance sampling degrades poorly as the dimension of the latent variables increases,
 unless we have a very well-chosen proposal distribution q(x)

If the posterior distribution is ‘peaky’, we need a lot of luck to end up in the
 high-probability region

Probabilistic inference
Metropolis-Hastings MCMC

Metropolis-Hastings

An alternative: Markov chain Monte Carlo methods draw samples from
 a target distribution by performing a biased random walk over the space of
 the latent variables x

The idea: create a Markov chain such that the sequence of
 states are samples from x0, x1, . . . p(x |y)

Metropolis-Hastings

An alternative: Markov chain Monte Carlo methods draw samples from
 a target distribution by performing a biased random walk over the space of
 the latent variables x

One step = one sample (execution)

The idea: create a Markov chain such that the sequence of
 states are samples from x0, x1, . . . p(x |y)

Metropolis-Hastings

Use proposal distribution to make local changes to the latent variables (the trace).
 then defines a conditional distribution over given a current value q(x′ |x) x′ x

Do we keep the new trace?

Yes, with probability A

Metropolis-Hastings

Use proposal distribution to make local changes to the latent variables (the trace).
 then defines a conditional distribution over given a current value q(x′ |x) x′ x

56

57

52

54

56

Generate the initial
trace with e.g. IS
Generate the initial
trace with e.g. IS
Generate the initial
trace with e.g. IS

Do we keep the new trace?

Yes, with probability A

Metropolis-Hastings

Use proposal distribution to make local changes to the latent variables (the trace).
 then defines a conditional distribution over given a current value q(x′ |x) x′ x

56

57

52

54

56

Generate the initial
trace with e.g. IS
Generate the initial
trace with e.g. IS
Generate the initial
trace with e.g. IS

Pick a variable
to modify Do we keep the new trace?

Yes, with probability A

Metropolis-Hastings

Use proposal distribution to make local changes to the latent variables (the trace).
 then defines a conditional distribution over given a current value q(x′ |x) x′ x

56

57

52

54

56

Generate the initial
trace with e.g. IS
Generate the initial
trace with e.g. IS
Generate the initial
trace with e.g. IS

Pick a variable
to modify

52 + Normal(0,2)

Modify the value
by e.g. adding a small
amount of noise

Do we keep the new trace?

Yes, with probability A

Metropolis-Hastings

Use proposal distribution to make local changes to the latent variables (the trace).
 then defines a conditional distribution over given a current value q(x′ |x) x′ x

56

57

52

54

56

Generate the initial
trace with e.g. IS
Generate the initial
trace with e.g. IS
Generate the initial
trace with e.g. IS

Pick a variable
to modify

52 + Normal(0,2)

Modify the value
by e.g. adding a small
amount of noise

56

57

54

54

56

New trace

Do we keep the new trace?

Yes, with probability A

Metropolis-Hastings: an illustration

Metropolis-Hastings: an illustration

Metropolis-Hastings: an illustration

Metropolis-Hastings: an illustration

Metropolis-Hastings: an illustration

Metropolis-Hastings: an illustration

Metropolis-Hastings: an illustration

Metropolis-Hastings MCMC: why can we re-weight?

The main technical requirement for MCMC is that the transition kernel
 leaves the posterior invariant

If we sample and then generate a
new sample from the transition kernel,
 and come from the same distribution

X ∼ p(X |Y)
X′ ∼ q(X′ |X, Y)

X X′

It is sufficient that the kernel satisfies the detailed balance criteria

q(X′ |X, Y)p(X |Y) = q(X |X′ , Y)p(X′ |Y) We have to be able to go
 back to from X X′

Acceptance criterion ensures that!

Properties of Metropolis-Hastings

General inference technique: doesn’t care what is in the program

• All programming constructs (loops, conditions, …)
• All distributions (continuous and discrete)
• Finite and infinite distribution traces

Properties of Metropolis-Hastings

General inference technique: doesn’t care what is in the program

• All programming constructs (loops, conditions, …)
• All distributions (continuous and discrete)
• Finite and infinite distribution traces

Properties of Metropolis-Hastings

General inference technique: doesn’t care what is in the program

• All programming constructs (loops, conditions, …)
• All distributions (continuous and discrete)
• Finite and infinite distribution traces

Properties of Metropolis-Hastings

General inference technique: doesn’t care what is in the program

• All programming constructs (loops, conditions, …)
• All distributions (continuous and discrete)
• Finite and infinite distribution traces

Metropolis-Hastings: computational efficiency

Metropolis-Hastings: computational efficiency

Metropolis-Hastings: properties

Metropolis-Hastings: properties

Metropolis-Hastings: properties

Makes small changes to traces

Metropolis-Hastings: properties

Makes small changes to traces

Gradually goes to better traces

Metropolis-Hastings: properties

Makes small changes to traces

Gradually goes to better traces

Metropolis-Hastings: properties

Makes small changes to traces

Gradually goes to better traces

It might be difficult to capture a complex
 distribution in small steps

Especially when choices are correlated

Probabilistic inference
Metropolis-Hastings MCMC

Importance sampling: makes all choices at once

Metropolis-Hastings: modify one choice at a time

Importance sampling: makes all choices at once

Metropolis-Hastings: modify one choice at a time

Can we do better?

Particle filters

Particle filters
(1) (2) (3) (4)

Initialise N traces/programs

Particle filters
(1) (2) (3) (4)

Initialise N traces/programs

Run them until the first observe statement

Particle filters
(1) (2) (3) (4)

Initialise N traces/programs

Run them until the first observe statement

0.32 0.05 0.07 0.45 And check how well they match the observations

Particle filters
(1) (2) (3) (4)

Initialise N traces/programs

Run them until the first observe statement

0.32 0.05 0.07 0.45 And check how well they match the observations

Then, resample traces with replacement
 proportional to how well they match observations(4) (1) (4) (4)

0.320.45 0.450.45

Particle filters
(4) (1) (4) (4)

Run until the next observe and resample

Particle filters
(4) (1) (4) (4)

Run until the next observe and resample

Continue until each program is finished

Properties of Particle filtering

General inference technique: doesn’t care what is in the program

• All programming constructs (loops, conditions, …)
• All distributions (continuous and discrete)
• Finite and infinite distribution traces

Properties of Particle filtering

General inference technique: doesn’t care what is in the program

• All programming constructs (loops, conditions, …)
• All distributions (continuous and discrete)
• Finite and infinite distribution traces

Properties of Particle filtering

General inference technique: doesn’t care what is in the program

• All programming constructs (loops, conditions, …)
• All distributions (continuous and discrete)
• Finite and infinite distribution traces

Properties of Particle filtering

General inference technique: doesn’t care what is in the program

• All programming constructs (loops, conditions, …)
• All distributions (continuous and discrete)
• Finite and infinite distribution traces

Particle filters

Particle filters

Particle filters

Particle filters

Good mixture between IS and MH

Particle filters

Good mixture between IS and MH

Often very good solution to complex programs

Particle filters

Good mixture between IS and MH

Often very good solution to complex programs

Doesn’t not support every programs

Particle filters

Good mixture between IS and MH

Often very good solution to complex programs

Doesn’t not support every programs

What to do if all initial samples are bad?

Particle filters

Good mixture between IS and MH

Often very good solution to complex programs

Doesn’t not support every programs

What to do if all initial samples are bad?

 Particle filters with rejuvenation (perform Metropolis-Hastings
 on the traces before sampling)
→

Summary

Calculating exactly is not possible for non-toy problemsp(x, y)

We have to rely on Monte Carlo approximations

Inference procedures need to be able to handle any kind of program

Importance sampling

Metropolis-Hastings MCMC

Particle filtering

