

CS4340: Probabilistic Programming Seminar

Lecture 3

Recap of the previous lecture

- Probabilistic programs are
- A powerful modelling tool
- Programs with two special statements: sample and observe

Recap of the previous lecture

function probabilisticHelloWorld():
return coin $1+\operatorname{coin} 2+\operatorname{coin} 3$

```
var coin1 = sample( Bernoulli(0.5) )
```

var coin1 = sample(Bernoulli(0.5))
var coin2 = sample(Bernoulli(0.5))
var coin2 = sample(Bernoulli(0.5))
var coin3 = sample(Bernoulli(0.5))
var coin3 = sample(Bernoulli(0.5))
observe(coin2 == 1)

```
observe( coin2 == 1 )
```

$$
p(x, y)=\prod_{t=1}^{T} f_{a_{t}}\left(x_{t} \mid x_{1: t-1}\right) \prod_{n=1}^{N} g_{n}\left(y_{n} \mid x_{1: \tau(n)}\right)
$$

"Prior" probs probabilities of sample
"Likelihood" probs probabilities of observe

This lecture

How do we calculate $p(x, y)$ efficiently?

This lecture

How do we calculate $p(x, y)$ efficiently?

Importance sampling
Metropolis-Hastings MCMC
Particle filtering

Probabilistic inference

function probabilisticHelloWorld():

$$
\begin{aligned}
& \text { var coin1 }=\text { sample(Bernoulli(0.5)) } \\
& \text { var coin2 }=\text { sample(Bernoulli(0.5)) } \\
& \text { var coin3 }=\text { sample(Bernoulli(0.5)) } \\
& \text { observe }(\operatorname{coin} 2==1)
\end{aligned}
$$

return coin $1+\operatorname{coin} 2+\operatorname{coin} 3$

This lecture

How do we calculate $p(x, y)$ efficiently?

Importance sampling
Metropolis-Hastings MCMC
Particle filtering

Probabilistic inference Intuition

Probabilistic inference

function probabilisticHelloWorld():

$$
\begin{aligned}
& \text { var coin1 }=\text { sample(Bernoulli(0.5)) } \\
& \text { var coin2 }=\text { sample(Bernoulli(0.5)) } \\
& \text { var coin3 }=\text { sample(Bernoulli(0.5)) } \\
& \text { observe }(\operatorname{coin} 2==1)
\end{aligned}
$$

return coin $1+\operatorname{coin} 2+\operatorname{coin} 3$

Probabilistic inference: Enumeration

```
c1 ~ sample( Bernoulli(0.6) )
c2 ~ sample( Bernoulli(0.6) )
c3 ~ sample( Bernoulli(0.6) )
return c1 + c2 + c3
```


Probabilistic inference: Enumeration

```
c1 ~ sample( Bernoulli(0.6) )
c2 ~ sample( Bernoulli(0.6) )
c3 ~ sample( Bernoulli(0.6) )
return c1 +c2 + c3
```


Probabilistic inference: Enumeration

```
c1 ~ sample( Bernoulli(0.6) )
c2 ~ sample( Bernoulli(0.6) )
c3 ~ sample( Bernoulli(0.6) )
```


return $c 1+c 2+c 3$

Probabilistic inference: Enumeration

```
c1 ~ sample( Bernoulli(0.6) )
c2 ~ sample( Bernoulli(0.6) )
c3 ~ sample( Bernoulli(0.6) )
return c1 + c2 + c3
```


Probabilistic inference: Enumeration

```
c1 ~ sample( Bernoulli(0.6) )
c2 ~ sample( Bernoulli(0.6) )
c3 ~ sample( Bernoulli(0.6) )
return c1 + c2 + c3
```


Probabilistic inference: Enumeration

```
c1 ~ sample( Bernoulli(0.6) )
c2 ~ sample( Bernoulli(0.6) )
c3 ~ sample( Bernoulli(0.6) )
return \(c 1+c 2+c 3\)
```


Probabilistic inference: Enumeration

```
c1 ~ sample( Bernoulli(0.6) )
c2 ~ sample( Bernoulli(0.6) )
c3 ~ sample( Bernoulli(0.6) )
return c1 + c2 + c3
```


Probabilistic inference: Enumeration

```
c1 ~ sample( Bernoulli(0.6) )
c2 ~ sample( Bernoulli(0.6) )
c3 ~ sample( Bernoulli(0.6) )
return c1 + c2 + c3
```


Probabilistic inference: Enumeration

```
c1 ~ sample( Bernoulli(0.6) )
c2 ~ sample( Bernoulli(0.6) )
c3 ~ sample( Bernoulli(0.6) )
return c1 + c2 + c3
```


Probabilistic inference: Enumeration

Probabilistic inference: Rules of inference

Probabilistic inference: Rules of inference

Product rule:
Probs of random choices multiply

```
c1 ~ sample( Bernoulli(0.6) )
c2 ~ sample( Bernoulli(0.6) )
c3 ~ sample( Bernoulli(0.6) )
```

return $c 1+c 2+c 3$

$0.216 \quad 0.144$
0.1440 .096
0.144
0.096
0.096

Probabilistic inference: Rules of inference

Product rule:
Probs of random choices multiply
c1 ~ sample(Bernoulli(0.6))
c2 ~ sample(Bernoulli(0.6))
c3 ~ sample(Bernoulli(0.6))
return $c 1+c 2+c 3$

Probabilistic inference: Rules of inference

Product rule:
Probs of random choices multiply

Sum rule:
Probs of alternatives add

$$
\begin{aligned}
& \text { c1 ~ sample(Bernoulli(0.6)) } \\
& \text { c2 ~ sample(Bernoulli(0.6)) } \\
& \text { c3 ~ sample(Bernoulli(0.6)) }
\end{aligned}
$$

return $c 1+c 2+c 3$

$0.216 \quad 0.144$

A few exercises

```
A ~ sample( Bernoulli(0.5) )
B ~ sample( Bernoulli(0.5) )
C = [A, B]
return C
```

Probability of C = [true, false] ?

A few exercises

```
A ~ sample( Bernoulli(0.5) )
B ~ sample( A ? Bernoulli(0.3) : Bernoulli(0.7))
C = [A, B]
return C
```

Probability of C = [true, false] ?

A few exercises

$$
\begin{aligned}
& \text { C }=\text { sample(Bernoulli(0.5)) Il sample(Bernoulli(0.5)) } \\
& \text { return C }
\end{aligned}
$$

Probability of $C=$ true ?

Probabilistic inference: What if there are many choices?

```
c1 ~ sample( Bernoulli(0.6) )
c2 ~ sample( Bernoulli(0.6) )
c3 ~ sample( Bernoulli(0.6) )
c20 ~ sample( Bernoulli(0.6) )
c21 ~ sample( Bernoulli(0.6) )
```

return sum(c1 to c21)

Probabilistic inference: What if there are many choices?

```
c1 ~ sample( Bernoulli(0.6) )
c2 ~ sample( Bernoulli(0.6) )
c3 ~ sample( Bernoulli(0.6) )
c20 ~ sample( Bernoulli(0.6) )
c21 ~ sample( Bernoulli(0.6) )
```

return sum(c1 to c21)

Probabilistic inference: What if there are many choices?

```
c1 ~ sample( Bernoulli(0.6) )
c2 ~ sample( Bernoulli(0.6) )
c3 ~ sample( Bernoulli(0.6) )
```

Too many choices to consistently explore

We have to approximate: find a representative subset of executions
c20 ~ sample(Bernoulli(0.6))
c21 ~ sample(Bernoulli(0.6))
return sum(c1 to c21)

Probabilistic inference: What if there are many choices?

```
c1 ~ sample( Bernoulli(0.6) )
c2 ~ sample( Bernoulli(0.6) )
c3 ~ sample( Bernoulli(0.6) )
```

c20 ~ sample(Bernoulli(0.6))
c21 ~ sample(Bernoulli(0.6))
Too many choices to consistently explore

We have to approximate: find a representative subset of executions

We approximate with a fixed amount of executions
return sum(c1 to c21)

Probabilistic inference: What if there are many choices?

```
c1 ~ sample( Bernoulli(0.6) )
c2 ~ sample( Bernoulli(0.6) )
c3 ~ sample( Bernoulli(0.6) )
```

c20 ~ sample(Bernoulli(0.6))
c21 ~ sample(Bernoulli(0.6))
return sum(c1 to c21)

Too many choices to consistently explore

We have to approximate: find a representative subset of executions

We approximate with a fixed amount of executions

We don't 'care equally about all executions:
We care about likely outcome more

Probabilistic inference: What if there are many choices?

Strategy: order (partial!) executions according to the probabilities of choices

Probabilistic inference: What if there are many choices?

Strategy: order (partial!) executions according to the probabilities of choices

Probabilistic inference: What if there are many choices?

Strategy: order (partial!) executions according to the probabilities of choices

Probabilistic inference: What if there are many choices?

Strategy: order (partial!) executions according to the probabilities of choices

Probabilistic inference: What if there are many choices?

Strategy: order (partial!) executions according to the probabilities of choices

Probabilistic inference: What if there are many choices?

Strategy: order (partial!) executions according to the probabilities of choices

Probabilistic inference: What if there are many choices?

Strategy: order (partial!) executions according to the probabilities of choices

Probabilistic inference: What if there are many choices?

Strategy: order (partial!) executions according to the probabilities of choices

Probabilistic inference: What if there are many choices?

Strategy: order (partial!) executions according to the probabilities of choices

Probabilistic inference: What if there are many choices?

Strategy: order (partial!) executions according to the probabilities of choices

Continue until we collect K executions then normalise

Conditioning:

```
c1 ~ sample( Bernoulli(0.6) )
c2 ~ sample( Bernoulli(0.6) )
c3 ~ sample( Bernoulli(0.6) )
observe(c2 == 1)
return c1 + c2 + c3
```


Conditioning: reject violating executions

```
c1 ~ sample( Bernoulli(0.6) )
c2 ~ sample( Bernoulli(0.6) )
c3 ~ sample( Bernoulli(0.6) )
observe(c2 == 1)
return c1 + c2 + c3
```


Conditioning: reject violating executions

Valid executions do not sum to 1 anymore

We need to adjust the probabilities according to the Bayes theorem
$P(A=a \mid B=b)=\frac{P(A=a, B=b)}{P(B=b)}$

Probabilistic programs with continuous distributions

```
\lambda~ sample(Normal(0.5, 1) )
c1 ~ sample( Bernoulli(\lambda) )
c2 ~ sample( Bernoulli(\lambda) )
c3 ~ sample( Bernoulli(\lambda) )
return c1 + c2 + c3
```


Probabilistic programs with continuous distributions

```
\lambda ~ sample(Normal(0.5, 1) )
c1 ~ sample( Bernoulli(\lambda) )
c2 ~ sample( Bernoulli(\lambda) )
c3 ~ sample( Bernoulli(\lambda) )
return c1 + c2 + c3
```


Probabilistic programs with continuous distributions

```
\lambda~ sample(Normal(0.5, 1) )
c1 ~ sample( Bernoulli(\lambda) )
c2 ~ sample( Bernoulli(\lambda) )
c3 ~ sample( Bernoulli(\lambda) )
return c1 + c2 + c3
return \(c 1+c 2+c 3\)
```


Infinite number of values

Probabilistic programs with continuous distributions

```
c1 ~ sample( Bernoulli(\lambda) )
c2 ~ sample( Bernoulli(\lambda) )
\lambda ~ sample(Normal(c1+c2, 0.1))
observe( }\lambda==2
return c1 + c2 + c3
```


Probabilistic programs with continuous distributions

```
c1 ~ sample( Bernoulli(\lambda) )
c2 ~ sample( Bernoulli(\lambda) )
\lambda ~ sample(Normal(c1+c2, 0.1))
observe(\lambda== 2)
return c1 + c2 + c3
```

c1 ~ sample(Bernoulli(λ))
c2 ~ sample(Bernoulli(λ))
$\lambda \sim$ sample(Normal(c1+c2, 0.1))
observe($\boldsymbol{\lambda}$, $\operatorname{Normal}(2,1)$)
return $c 1+c 2+c 3$

Probabilistic programs with continuous distributions

```
c1 ~ sample( Bernoulli(\lambda) )
c1 ~ sample(Bernoulli(\lambda) )
c2 ~ sample( Bernoulli(\lambda) )
c2 ~ sample( Bernoulli(\lambda) )
\lambda ~ sample(Normal(c1+c2, 0.1))
\lambda~ sample(Normal(c1+c2, 0.1))
observe( }\lambda==2
return c1 + c2 + c3
```


Probability that λ value is an observation from the distribution Normal $(2,1)$

Probabilistic programs with continuous distributions

```
c1 ~ sample( Bernoulli(0.6) )
c2 ~ sample( Bernoulli(0.4) )
\lambda~ sample(Normal(c1+c2, 0.1))
observe(\lambda,Normal(2, 1))
```

return $c 1+c 2+c 3$

Probabilistic programs with continuous distributions

```
c1 ~ sample( Bernoulli(0.6) )
c2 ~ sample( Bernoulli(0.4) )
\lambda~ sample(Normal(c1+c2, 0.1))
observe(\lambda,Normal(2, 1))
return c1 + c2 + c3
```


Probabilistic programs with continuous distributions

```
c1 ~ sample( Bernoulli(0.6) )
c2 ~ sample( Bernoulli(0.4) )
\lambda~ sample(Normal(c1+c2, 0.1))
observe(\lambda,Normal(2, 1))
return c1 + c2 + c3
```


Probabilistic programs with continuous distributions

```
c1 ~ sample( Bernoulli(0.6) )
c2 ~ sample( Bernoulli(0.4) )
\lambda~ sample(Normal(c1+c2, 0.1))
observe(\lambda,Normal(2, 1))
```


return $c 1+c 2+c 3$

Probabilistic programs with continuous distributions

```
c1 ~ sample( Bernoulli(0.6) )
c2 ~ sample( Bernoulli(0.4) )
\lambda~ sample(Normal(c1+c2, 0.1))
observe(\lambda,Normal(2, 1))
return c1 + c2 + c3
```


Desiderata for general inference techniques

General inference technique: doesn't care what is in the program

- All programming constructs (loops, conditions, ...)
- All distributions (continuous and discrete)
- Finite and infinite distribution traces

Probabilistic inference Grand tour

Preliminaries

```
\lambda~ sample(Normal(0.5, 1) )
c1 ~ sample( Bernoulli(\lambda) )
c2 ~ sample( Bernoulli( }\lambda\mathrm{ ) )
c3 ~ sample( Bernoulli( }\lambda\mathrm{ ) )
observe(c1+c2+c3, Dirac(2))
return }
```


Preliminaries

```
\lambda~ sample(Normal(0.5, 1))
c1 ~ sample( Bernoulli(\lambda) )
c2 ~ sample( Bernoulli( }\lambda\mathrm{ ) )
c3 ~ sample( Bernoulli(\lambda) )
observe(c1+c2+c3, Dirac(2))
return }
Program
```


Preliminaries

Preliminaries

Preliminaries

Preliminaries

Trace: a state of all probabilistic choices in a program
$\lambda: 0.43$
c1: 0
c2: 1
c3: 0

Monte Carlo estimation

Randomly simulate a process
$P($ desired outcome $)=E[$ desired outcome]
$=\frac{\text { simulations with desired outcome }}{\text { all simulations }}$

Monte Carlo estimation

Randomly simulate a process
$P($ desired outcome $)=E[$ desired outcome]
$=\frac{\text { simulations } \text { with desired outcome }}{\text { all simulations }}$

$$
\pi=4 \frac{\text { area circle }}{\text { area square }}=4 \frac{\text { inner }}{\text { total }}
$$

Monte Carlo estimation

Randomly simulate a process
$P($ desired outcome $)=E[$ desired outcome]
$=\frac{\text { simulations } \text { with desired outcome }}{\text { all simulations }}$

$$
\pi=4 \frac{\text { area circle }}{\text { area square }}=4 \frac{\text { inner }}{\text { total }}
$$

Monte Carlo estimation

Randomly simulate a process
$P($ desired outcome $)=E[$ desired outcome]
$=\frac{\text { simulations } \text { with desired outcome }}{\text { all simulations }}$

$$
\pi=4 \frac{\text { area circle }}{\text { area square }}=4 \frac{\text { inner }}{\text { total }}
$$

Monte Carlo estimation

Randomly simulate a process
$P($ desired outcome $)=E[$ desired outcome]
$=\frac{\text { simulations } \text { with desired outcome }}{\text { all simulations }}$

$$
\pi=4 \frac{\text { area circle }}{\text { area square }}=4 \frac{\text { inner }}{\text { total }}
$$

Monte Carlo estimation

Randomly simulate a process
$P($ desired outcome $)=E[$ desired outcome]
$=\frac{\text { simulations } \text { with desired outcome }}{\text { all simulations }}$

$$
\pi=4 \frac{\text { area circle }}{\text { area square }}=4 \frac{\text { inner }}{\text { total }}
$$

Monte Carlo estimation

Randomly simulate a process
$P($ desired outcome $)=E[$ desired outcome]
$=\frac{\text { simulations } \text { with desired outcome }}{\text { all simulations }}$

$$
\pi=4 \frac{\text { area circle }}{\text { area square }}=4 \frac{\text { inner }}{\text { total }}
$$

Monte Carlo estimation

Randomly simulate a process
$P($ desired outcome $)=E[$ desired outcome]
$=\frac{\text { simulations } \text { with desired outcome }}{\text { all simulations }}$

$$
\pi=4 \frac{\text { area circle }}{\text { area square }}=4 \frac{\text { inner }}{\text { total }}
$$

Monte Carlo estimation

Randomly simulate a process
$P($ desired outcome $)=E[$ desired outcome]
$=\frac{\text { simulations } \text { with desired outcome }}{\text { all simulations }}$

$$
\pi=4 \frac{\text { area circle }}{\text { area square }}=4 \frac{\text { inner }}{\text { total }}
$$

Monte Carlo estimation

Randomly simulate a process
$P($ desired outcome $)=E[$ desired outcome]
$=\frac{\text { simulations } \text { with desired outcome }}{\text { all simulations }}$

$$
\pi=4 \frac{\text { area circle }}{\text { area square }}=4 \frac{\text { inner }}{\text { total }}
$$

Monte Carlo estimation

Randomly simulate a process
$P($ desired outcome $)=E[$ desired outcome]
$=\frac{\text { simulations } \text { with desired outcome }}{\text { all simulations }}$

$$
\pi=4 \frac{\text { area circle }}{\text { area square }}=4 \frac{\text { inner }}{\text { total }}
$$

Monte Carlo estimation

Randomly simulate a process
$P($ desired outcome $)=E[$ desired outcome]
$=\frac{\text { simulations } \text { with desired outcome }}{\text { all simulations }}$

$$
\pi=4 \frac{\text { area circle }}{\text { area square }}=4 \frac{\text { inner }}{\text { total }}
$$

Monte Carlo estimation

Randomly simulate a process
$P($ desired outcome $)=E[$ desired outcome]
$=\frac{\text { simulations } \text { with desired outcome }}{\text { all simulations }}$

$$
\pi=4 \frac{\text { area circle }}{\text { area square }}=4 \frac{\text { inner }}{\text { total }}
$$

Monte Carlo estimation

Randomly simulate a process
$P($ desired outcome $)=E[$ desired outcome]
$=\frac{\text { simulations } \text { with desired outcome }}{\text { all simulations }}$

$$
\pi=4 \frac{\text { area circle }}{\text { area square }}=4 \frac{\text { inner }}{\text { total }}
$$

Monte Carlo estimation

Randomly simulate a process
$P($ desired outcome $)=E[$ desired outcome]
$=\frac{\text { simulations } \text { with desired outcome }}{\text { all simulations }}$

$$
\pi=4 \frac{\text { area circle }}{\text { area square }}=4 \frac{\text { inner }}{\text { total }}
$$

Running example

Measure a heat source in a factory with 3 different sensors

$$
\begin{aligned}
& \text { heat ~ sample(Normal(} 56,10) \text {) } \\
& \text { sensor1 ~ sample(Normal(heat,3)) } \\
& \text { sensor2 ~ sample(Normal(heat,5)) } \\
& \text { sensor3 ~ sample(Normal(heat,5)) } \\
& \text { observe(sensor2, Normal(43,2)) } \\
& \text { return heat }
\end{aligned}
$$

Probabilistic inference Importance sampling

Importance sampling

Execute the probabilistic program N times
Treat the distribution over outcomes as the empirical distribution
heat \sim sample($\operatorname{Normal}(56,10)$)
sensor1 ~ sample(Normal(heat,3))
sensor2 ~ sample(Normal(heat,5))
sensor3 ~ sample(Normal(heat,5))
observe(sensor2, Normal(43,2))
return heat

Importance sampling

Execute the probabilistic program N times
Treat the distribution over outcomes as the empirical distribution

```
heat ~ sample( Normal(56,10) )
sensor1 ~ sample( Normal(heat,3) )
sensor2 ~ sample( Normal(heat,5) )
sensor3 ~ sample( Normal(heat,5) )
observe( sensor2,Normal(43,2) )
return heat

\section*{Importance sampling}

Execute the probabilistic program \(N\) times
Treat the distribution over outcomes as the empirical distribution
heat \(\sim\) sample( \(\operatorname{Normal}(56,10)\) )
sensor1 \(\sim\) sample( Normal(heat,3) )
sensor2 \(\sim\) sample( Normal(heat,5) )
sensor3 \(\sim\) sample( Normal(heat,5) )
observe( sensor2, Normal( 43,2 ) )
return heat


\section*{Importance sampling}

Execute the probabilistic program \(N\) times
Treat the distribution over outcomes as the empirical distribution
```

heat ~ sample(Normal(56,10))
sensor1 ~ sample(Normal(heat,3))
sensor2 ~ sample(Normal(heat,5))
sensor3 ~ sample(Normal(heat,5))
observe(sensor2,Normal(43,2))
return heat

```


\section*{Importance sampling}

Execute the probabilistic program \(N\) times
Treat the distribution over outcomes as the empirical distribution
```

heat ~ sample(Normal(56,10))
sensor1 ~ sample(Normal(heat,3))
sensor2 ~ sample(Normal(heat,5))
sensor3 ~ sample(Normal(heat,5))
observe(sensor2,Normal(43,2))
return heat

```


\section*{Importance sampling}

Samples obtained by executing a program are from p(heat) not \(p\) (heat \(\mid\) sensor2 \(=43\) )!


\section*{Importance sampling}

Samples obtained by executing a program are from \(p\) (heat) not \(p\) (heat \(\mid\) sensor2 \(=43\) ) !


We can fix this by weighting each execution proportionally to how much it agrees with observe( sensor2, \(\operatorname{Normal}(43,2)\) )

\section*{Importance sampling}

Samples obtained by executing a program are from \(p\) (heat) not \(p\) (heat \(\mid\) sensor2 \(=43\) ) !


We can fix this by weighting each execution
proportionally to how much it agrees with observe( sensor2, Normal( 43,2 ) )
\[
\begin{aligned}
& \text { heat }^{4}=48 \\
& \text { sensor2 } 2^{4}=52 \\
& \left.\mathrm{~W}^{4}=\mathrm{p} \text { (sensor2 }=52 ; \operatorname{Normal}(43,2)\right)
\end{aligned}
\]

\section*{Importance sampling}

Samples obtained by executing a program are from \(p\) (heat) not \(p\) (heat \(\mid\) sensor2 \(=43\) ) !

We can fix this by weighting each execution
 proportionally to how much it agrees with observe( sensor2, \(\operatorname{Normal}(43,2)\) )
\[
\begin{aligned}
& \text { heat }^{4}=48 \\
& \text { sensor2 } \\
& \text { = }=52 \\
& \mathrm{~W}^{4}=p(\text { sensor2 }=52 ; \operatorname{Normal}(43,2)) \\
& \mathrm{W}^{3}=p(\text { sensor2 }=62 ; \operatorname{Normal}(43,2))
\end{aligned}
\]

\section*{Importance sampling}

Samples obtained by executing a program are from \(p\) (heat) not \(p\) (heat \(\mid\) sensor2 \(=43\) ) !
 proportionally to how much it agrees with observe( sensor2, Normal( 43,2 ) )
\[
\begin{aligned}
& \text { heat }^{4}=48 \\
& \text { sensor2 } 2^{4}=52 \\
& \mathrm{~W}^{4}=\mathrm{p}(\text { sensor2 }=52 ; \operatorname{Normal}(43,2)) \\
& W^{3}=p(\text { sensor2 }=62 ; \operatorname{Normal}(43,2)) \\
& \text { Probability of any } \\
& \text { outcome i becomes: } \\
& \mathrm{p}\left(\text { outcome }{ }^{i}\right)=\frac{W^{i}}{\sum_{k=1}^{L} W^{k}}
\end{aligned}
\]

We can fix this by weighting each execution

\section*{Importance sampling: why can we re-weight?}

Discrete and continuous expectations
\[
\begin{aligned}
& \mathbb{E}[f]=\sum_{x} p(x) f(x) \\
& \mathbb{E}[f]=\int p(x) f(x) \mathrm{d} x
\end{aligned}
\]

Conditional on another variable
\[
\mathbb{E}_{x}[f \mid y]=\sum_{x} p(x \mid y) f(x)
\]

\section*{Importance sampling: why can we re-weight?}

Sidestep sampling from the posterior p(heat | sensor2 = 43) entirely, and draw from some proposal distribution \(q(\) heat \()\) instead

\section*{Any distribution that is easy to sample from}

Instead of computing an expectation with respect to p(heat I sensor2), We compute an expectation with respect to \(q\) (heat)
\[
\begin{aligned}
\mathbb{E}_{p(x \mid y)}[f(x)] & =\int f(x) p(x \mid y) \mathrm{d} x \\
& =\int f(x) p(x \mid y) \frac{q(x)}{q(x)} \mathrm{d} x \\
& =\mathbb{E}_{q(x)}\left[f(x) \frac{p(x \mid y)}{q(x)}\right]
\end{aligned}
\]

\section*{Importance sampling: why can we re-weight?}

We define an "importance weight" \(\quad W(x)=\frac{p(x \mid y)}{q(x)}\)

Then with \(x_{i} \sim q(x)\)
\[
\mathbb{E}_{p(x \mid y)}[f(x)]=\mathbb{E}_{q(x)}[f(x) W(x)] \approx \frac{1}{N} \sum_{i=1}^{N} f\left(x_{i}\right) W\left(x_{i}\right)
\]

Expectations are now computed using weighted samples from \(q(x)\), instead of unweighted samples from \(p(x \mid y)\)

\section*{Importance sampling: why can we re-weight?}

One problem left: we cannot evaluate the weight just yet
\[
W(x)=\frac{p(x \mid y)}{q(x)} \quad \text { We did all this to avoid calculating this term }
\]

But we can evaluate it up to a constant
\[
w(x)=\frac{p(x, y)}{q(x)}
\]

Approximation
\[
W\left(x_{i}\right) \approx \frac{w\left(x_{i}\right)}{\sum_{j=1}^{N} w\left(x_{j}\right)} \quad \mathbb{E}_{p(x \mid y)}[f(x)] \approx \sum_{i=1}^{N} \frac{w\left(x_{i}\right)}{\sum_{j=1}^{N} w\left(x_{j}\right)} f\left(x_{i}\right)
\]

\section*{Importance sampling: why can we re-weight?}

We already have a very simple proposal distribution we know how to sample from: the prior \(p(x)\)

\section*{Importance sampling: why can we re-weight?}

We already have a very simple proposal distribution we know how to sample from: the prior \(p(x)\)

The algorithm then resembles the rejection sampling algorithm, except of sampling both the latest and the observed variables, we only sample the latent ones

\section*{Importance sampling: why can we re-weight?}

We already have a very simple proposal distribution we know how to sample from: the prior \(p(x)\)

The algorithm then resembles the rejection sampling algorithm, except of sampling both the latest and the observed variables, we only sample the latent ones

Then, instead of a "hard" rejection step, we use the values of the latent variables and that data to assign "soft" weights to the sampled values

\section*{Properties of importance sampling}

General inference technique: doesn't care what is in the program
- All programming constructs (loops, conditions, ...)
- All distributions (continuous and discrete)
- Finite and infinite distribution traces

\section*{Properties of importance sampling}

General inference technique: doesn't care what is in the program
- All programming constructs (loops, conditions, ...)
- All distributions (continuous and discrete)
- Finite and infinite distribution traces

\section*{Properties of importance sampling}

General inference technique: doesn't care what is in the program
- All programming constructs (loops, conditions, ...)
- All distributions (continuous and discrete) 넨
- Finite and infinite distribution traces

\section*{Properties of importance sampling}

General inference technique: doesn't care what is in the program
- All programming constructs (loops, conditions, ...)
- All distributions (continuous and discrete)
- Finite and infinite distribution traces


\section*{Properties of importance sampling}

Importance sampling degrades poorly as the dimension of the latent variables increases, unless we have a very well-chosen proposal distribution \(q(x)\)

If the posterior distribution is 'peaky', we need a lot of luck to end up in the high-probability region

Probabilistic inference Metropolis-Hastings MCMC

\section*{Metropolis-Hastings}

An alternative: Markov chain Monte Carlo methods draw samples from a target distribution by performing a biased random walk over the space of the latent variables \(x\)

The idea: create a Markov chain such that the sequence of states \(x_{0}, x_{1}, \ldots\) are samples from \(p(x \mid y)\)


\section*{Metropolis-Hastings}

An alternative: Markov chain Monte Carlo methods draw samples from a target distribution by performing a biased random walk over the space of the latent variables \(x\)

One step \(=\) one sample (execution)

The idea: create a Markov chain such that the sequence of states \(x_{0}, x_{1}, \ldots\) are samples from \(p(x \mid y)\)


\section*{Metropolis-Hastings}

Use proposal distribution to make local changes to the latent variables (the trace). \(q\left(x^{\prime} \mid x\right)\) then defines a conditional distribution over \(x^{\prime}\) given a current value \(x\)
\[
A\left(x \rightarrow x^{\prime}\right)=\min \left(1, \frac{p\left(x^{\prime}, y\right) q\left(x \mid x^{\prime}\right)}{p(x, y) q\left(x^{\prime} \mid x\right)}\right)
\]

Yes, with probability \(A\)

\section*{Metropolis-Hastings}

Use proposal distribution to make local changes to the latent variables (the trace). \(q\left(x^{\prime} \mid x\right)\) then defines a conditional distribution over \(x^{\prime}\) given a current value \(x\)

Generate the initial
trace with e.g. IS

Do we keep the new trace?
\[
A\left(x \rightarrow x^{\prime}\right)=\min \left(1, \frac{p\left(x^{\prime}, y\right) q\left(x \mid x^{\prime}\right)}{p(x, y) q\left(x^{\prime} \mid x\right)}\right)
\]

Yes, with probability \(A\)

\section*{Metropolis-Hastings}

Use proposal distribution to make local changes to the latent variables (the trace). \(q\left(x^{\prime} \mid x\right)\) then defines a conditional distribution over \(x^{\prime}\) given a current value \(x\)

Generate the initial
trace with e.g. IS


Do we keep the new trace?
\[
A\left(x \rightarrow x^{\prime}\right)=\min \left(1, \frac{p\left(x^{\prime}, y\right) q\left(x \mid x^{\prime}\right)}{p(x, y) q\left(x^{\prime} \mid x\right)}\right)
\]

Yes, with probability \(A\)

\section*{Metropolis-Hastings}

Use proposal distribution to make local changes to the latent variables (the trace). \(q\left(x^{\prime} \mid x\right)\) then defines a conditional distribution over \(x^{\prime}\) given a current value \(x\)


Do we keep the new trace?
\[
A\left(x \rightarrow x^{\prime}\right)=\min \left(1, \frac{p\left(x^{\prime}, y\right) q\left(x \mid x^{\prime}\right)}{p(x, y) q\left(x^{\prime} \mid x\right)}\right)
\]

Yes, with probability \(A\)

\section*{Metropolis-Hastings}

Use proposal distribution to make local changes to the latent variables (the trace). \(q\left(x^{\prime} \mid x\right)\) then defines a conditional distribution over \(x^{\prime}\) given a current value \(x\)


Do we keep the new trace?
\[
A\left(x \rightarrow x^{\prime}\right)=\min \left(1, \frac{p\left(x^{\prime}, y\right) q\left(x \mid x^{\prime}\right)}{p(x, y) q\left(x^{\prime} \mid x\right)}\right)
\]

Yes, with probability \(A\)

\section*{Metropolis-Hastings: an illustration}


The (unnormalized) joint distribution \(p(x, y)\) is shown as a dashed line

\section*{Metropolis-Hastings: an illustration}


Initialize arbitrarily (e.g. with a sample from the prior)

\section*{Metropolis-Hastings: an illustration}


Propose a local move on \(x\) from a transition distribution

\section*{Metropolis-Hastings: an illustration}


Here, we proposed a point in a region of higher probability density, and accepted

\section*{Metropolis-Hastings: an illustration}


Continue: propose a local move, and accept or reject. At first, this will look like a stochastic search algorithm!

\section*{Metropolis-Hastings: an illustration}

100 MCMC iterations


Once in a high-density region, it will explore the space

\section*{Metropolis-Hastings: an illustration}


Once in a high-density region, it will explore the space

\section*{Metropolis-Hastings MCMC: why can we re-weight?}

The main technical requirement for MCMC is that the transition kernel leaves the posterior invariant

If we sample \(X \sim p(X \mid Y)\) and then generate a new sample \(X^{\prime} \sim q\left(X^{\prime} \mid X, Y\right)\) from the transition kernel, \(X\) and \(X^{\prime}\) come from the same distribution

It is sufficient that the kernel satisfies the detailed balance criteria
\[
q\left(X^{\prime} \mid X, Y\right) p(X \mid Y)=q\left(X \mid X^{\prime}, Y\right) p\left(X^{\prime} \mid Y\right)
\]

We have to be able to go back to \(X\) from \(X^{\prime}\)

Acceptance criterion ensures that!

\section*{Properties of Metropolis-Hastings}

General inference technique: doesn't care what is in the program
- All programming constructs (loops, conditions, ...)
- All distributions (continuous and discrete)
- Finite and infinite distribution traces

\section*{Properties of Metropolis-Hastings}

General inference technique: doesn't care what is in the program
- All programming constructs (loops, conditions, ...)
- All distributions (continuous and discrete)
- Finite and infinite distribution traces

\section*{Properties of Metropolis-Hastings}

General inference technique: doesn't care what is in the program
- All programming constructs (loops, conditions, ...)
- All distributions (continuous and discrete)
- Finite and infinite distribution traces

\section*{Properties of Metropolis-Hastings}

General inference technique: doesn't care what is in the program
- All programming constructs (loops, conditions, ...)
- All distributions (continuous and discrete)
- Finite and infinite distribution traces


\section*{Metropolis-Hastings: computational efficiency}

D. Wingate, A. Stuhlmueller, and N. D. Goodman.
"Lightweight implementations of probabilistic programming languages via transformational compilation." AISTATS (2011).

\section*{Metropolis-Hastings: computational efficiency}

D. Wingate, A. Stuhlmueller, and N. D. Goodman.
"Lightweight implementations of probabilistic programming languages via transformational compilation." AISTATS (2011).

"C3: Lightweight Incrementalized MCMC for Probabilistic Programs using Continuations and Callsite Caching." D. Ritchie, A. Stuhlmuller, and N. D. Goodman. arXiv:1509.02151 (2015).

\section*{Metropolis-Hastings: properties}

\section*{Metropolis-Hastings: properties}

\section*{Metropolis-Hastings: properties}

Makes small changes to traces

\section*{Metropolis-Hastings: properties}

Makes small changes to traces
Gradually goes to better traces

\section*{Metropolis-Hastings: properties}

Makes small changes to traces
Gradually goes to better traces


\section*{Metropolis-Hastings: properties}

Makes small changes to traces
Gradually goes to better traces

©
It might be difficult to capture a complex distribution in small steps

Especially when choices are correlated


Probabilistic inference Metropolis-Hastings MCMC

Importance sampling: makes all choices at once

Metropolis-Hastings: modify one choice at a time

Importance sampling: makes all choices at once

Metropolis-Hastings: modify one choice at a time

Can we do better?

\section*{Particle filters}

\section*{Particle filters}
(1)
(2)
(3)
(4)

Initialise N traces/programs

\section*{Particle filters}
(1)
(2)
(3)
(4)


Initialise N traces/programs

Run them until the first observe statement

\section*{Particle filters}
(1)
(2)

0.05
0.07
0.45

Initialise N traces/programs

Run them until the first observe statement
And check how well they match the observations

\section*{Particle filters}
(1)

\[
0.32
\]
(4)

0.45
(2)

0.05
0.07

(1)
(4)

0.32

0.45
(4)

0.45

Initialise N traces/programs

Run them until the first observe statement
And check how well they match the observations

Then, resample traces with replacement proportional to how well they match observations

\section*{Particle filters}

(1)
(4)
(4)


Run until the next observe and resample

\section*{Particle filters}


Run until the next observe and resample

Continue until each program is finished

\section*{Properties of Particle filtering}

General inference technique: doesn't care what is in the program
- All programming constructs (loops, conditions, ...)
- All distributions (continuous and discrete)
- Finite and infinite distribution traces

\section*{Properties of Particle filtering}

General inference technique: doesn't care what is in the program
- All programming constructs (loops, conditions, ...)
- All distributions (continuous and discrete)
- Finite and infinite distribution traces

\section*{Properties of Particle filtering}

General inference technique: doesn't care what is in the program
- All programming constructs (loops, conditions, ...)

- All distribution (continuous and discrete) 슨
- Finite and infinite distribution traces

\section*{Properties of Particle filtering}

General inference technique: doesn't care what is in the program
- All programming constructs (loops, conditions, ...)

- All distributions (continuous and discrete)
- Finite and infinite distribution traces

\section*{Particle filters}

\section*{Particle filters}

\section*{Particle filters}

\section*{Particle filters}

Good mixture between IS and MH

\section*{Particle filters}

Good mixture between IS and MH
Often very good solution to complex programs

\section*{Particle filters}

Good mixture between IS and MH
Often very good solution to complex programs

Doesn't not support every programs

\section*{Particle filters}

Good mixture between IS and MH
Often very good solution to complex programs

Doesn't not support every programs
What to do if all initial samples are bad?

\section*{Particle filters}

Good mixture between IS and MH
Often very good solution to complex programs

Doesn't not support every programs
What to do if all initial samples are bad?
\(\rightarrow\) Particle filters with rejuvenation (perform Metropolis-Hastings on the traces before sampling)

\section*{Summary}

Calculating \(p(x, y)\) exactly is not possible for non-toy problems

We have to rely on Monte Carlo approximations

Inference procedures need to be able to handle any kind of program
Importance sampling
Metropolis-Hastings MCMC
Particle filtering```

