
CS4340: Probabilistic Programming Seminar
Lecture 3



Recap of the previous lecture

• Probabilistic programs are 

• A powerful modelling tool 

• Programs with two special statements: sample and observe



Recap of the previous lecture

p(x, y) =
T

∏
t=1

fat
(xt |x1:t−1)

N

∏
n=1

gn(yn |x1:τ(n))

“Prior” probs 
probabilities of sample “Likelihood” probs 

probabilities of observe

function  probabilisticHelloWorld(): 

           var coin1 = sample( Bernoulli(0.5) ) 
          var coin2 = sample( Bernoulli(0.5) ) 
          var coin3 = sample( Bernoulli(0.5) ) 
          observe( coin2 == 1 ) 

           return coin1 + coin2 + coin3 
end
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           return coin1 + coin2 + coin3 
end
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Product rule: 
Probs of random choices multiply

Sum rule: 
Probs of alternatives add

c1 ~ sample( Bernoulli(0.6) ) 
c2 ~ sample( Bernoulli(0.6) ) 
c3 ~ sample( Bernoulli(0.6) ) 

return c1 + c2 + c3
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return C

Probability of C = [true, false] ?
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A ~ sample( Bernoulli(0.5) ) 
B ~ sample( A ? Bernoulli(0.3) : Bernoulli(0.7)) 
C = [A, B] 

return C

Probability of C = [true, false] ?
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C = sample( Bernoulli(0.5) ) || sample( Bernoulli(0.5) ) 

return C

Probability of C = true ?
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return sum(c1 to c21)
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Probabilistic inference: What if there are many choices?

c1 ~ sample( Bernoulli(0.6) ) 
c2 ~ sample( Bernoulli(0.6) ) 
c3 ~ sample( Bernoulli(0.6) ) 
…… 
c20 ~ sample( Bernoulli(0.6) ) 
c21 ~ sample( Bernoulli(0.6) ) 

return sum(c1 to c21)

Too many choices to consistently explore

We have to approximate: find a representative subset 
          of executions 

We approximate with a fixed amount of executions

We don’t ‘care equally about all executions: 
        We care about likely outcome more
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Probabilistic inference: What if there are many choices?
Strategy: order (partial!) executions according to the probabilities of choices

c1

c2

p(c1=1, c2=1) = 0.36 p(c1,c2) = 0.24

c2

0.24 0.16

c3

0.216 0.144

p(c1=1) = 0.6 p(c1=0) = 0.4

Continue until we collect K executions then normalise



Conditioning:
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Conditioning:

c1

c2 c2

1 0

c3 c3
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c3 c3
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reject violating executions

P(A = a |B = b) =
P(A = a, B = b)

P(B = b)

Valid executions do not sum to 1 anymore

We need to adjust the probabilities  
       according to the Bayes theorem



Probabilistic programs with continuous distributions
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Probabilistic programs with continuous distributions
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Probabilistic programs with continuous distributions

c1 ~ sample( Bernoulli(0.6) ) 
c2 ~ sample( Bernoulli(0.4) ) 

 ~ sample( Normal(c1+c2, 0.1) ) 
      
observe( , Normal(2, 1)) 

return c1 + c2 + c3

λ

λ

c1
1 0

c2 c2

1 10 0

λ λ λ λ

2.34 1.07 0.92 0.03

0.6

0.4

p(2.34; Normal(2,0.1))



Desiderata for general inference techniques

General inference technique: doesn’t care what is in the program

• All programming constructs (loops, conditions, …) 
• All distributions (continuous and discrete) 
• Finite and infinite distribution traces



Probabilistic inference 
Grand tour
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Preliminaries

 ~ sample( Normal(0.5, 1) ) 

c1 ~ sample( Bernoulli( ) ) 
c2 ~ sample( Bernoulli( ) ) 
c3 ~ sample( Bernoulli( ) ) 

observe(c1+c2+c3,  Dirac(2)) 

return 

λ

λ
λ
λ

λ Program

Probabilistic choice

Observations

Trace: a state of all probabilistic 
choices in a program 

 
c1: 0 
c2 : 1 
c3 : 0

λ : 0.43

Outcome
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Running example

Measure a heat source in a factory with 3 different sensors

heat ~ sample( Normal(56,10) )

sensor1 ~ sample( Normal(heat,3) )

sensor2 ~ sample( Normal(heat,5) )

sensor3 ~ sample( Normal(heat,5) )

observe( sensor2, Normal(43,2) )

return heat



Probabilistic inference 
Importance sampling
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Treat the distribution over outcomes as the empirical distribution 
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return heat
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Execute the probabilistic program N times
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Importance sampling
Samples obtained by executing a program are from p(heat) not p(heat | sensor2 = 43) !
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We can fix this by weighting each execution 
proportionally to how much it agrees with 
observe( sensor2, Normal(43,2) ) 

heat  = 48 
sensor2  = 52 
W  = p(sensor2 = 52; Normal(43,2))

4

4

4

W  = p(sensor2 = 62; Normal(43,2))3

(1) (2) (3) (4)

p(outcome ) = i Wi

∑L
k=1 Wk

Probability of any 
outcome i becomes:



Importance sampling: why can we re-weight?

Discrete and continuous expectations 

Conditional on another variable



Importance sampling: why can we re-weight?

Sidestep sampling from the posterior p(heat | sensor2 = 43) entirely, 
      and draw from some proposal distribution q(heat) instead 

Any distribution that is easy to sample from

Instead of computing an expectation with respect to p(heat | sensor2),  
      We compute an expectation with respect to q(heat)



Importance sampling: why can we re-weight?

We define an “importance weight”     W(x) =
p(x |y)
q(x)

Then with  ~     xi q(x)

Expectations are now computed using weighted  samples from ,  
          instead of unweighted samples from 

q(x)
p(x |y)



Importance sampling: why can we re-weight?

One problem left: we cannot evaluate the weight just yet

W(x) =
p(x |y)
q(x)

We did all this to avoid calculating this term

But we can evaluate it up to a constant

w(x) =
p(x, y)
q(x)

Approximation
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We already have a very simple proposal distribution we know how to sample from: 
              the prior p(x)
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Importance sampling: why can we re-weight?

We already have a very simple proposal distribution we know how to sample from: 
              the prior p(x)

The algorithm then resembles the rejection sampling algorithm, except of sampling 
          both the latest and the observed variables, we only sample the latent ones

Then, instead of a “hard” rejection step, we use the values of the latent variables and that 
        data to assign “soft” weights to the sampled values



Properties of importance sampling

General inference technique: doesn’t care what is in the program

• All programming constructs (loops, conditions, …) 
• All distributions (continuous and discrete) 
• Finite and infinite distribution traces
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Properties of importance sampling

Importance sampling degrades poorly as the dimension of the latent variables increases, 
      unless we have a very well-chosen proposal distribution q(x)

If the posterior distribution is ‘peaky’, we need a lot of luck to end up in the  
          high-probability region



Probabilistic inference 
Metropolis-Hastings MCMC



Metropolis-Hastings 

An alternative: Markov chain Monte Carlo methods draw samples from  
     a target distribution by performing a biased random walk over the space of  
     the latent variables x

The idea: create a Markov chain such that the sequence of  
         states  are samples from x0, x1, . . . p(x |y)



Metropolis-Hastings 

An alternative: Markov chain Monte Carlo methods draw samples from  
     a target distribution by performing a biased random walk over the space of  
     the latent variables x

One step = one sample (execution)

The idea: create a Markov chain such that the sequence of  
         states  are samples from x0, x1, . . . p(x |y)
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Do we keep the new trace?

Yes, with probability A
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Metropolis-Hastings 

Use proposal distribution to make local changes to the latent variables (the trace). 
       then defines a conditional distribution over  given a current value q(x′ |x) x′ x
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Modify the value 
by e.g. adding a small 
amount of noise

Do we keep the new trace?

Yes, with probability A



Metropolis-Hastings 

Use proposal distribution to make local changes to the latent variables (the trace). 
       then defines a conditional distribution over  given a current value q(x′ |x) x′ x

56

57

52

54

56

Generate the initial  
trace with e.g. IS
Generate the initial  
trace with e.g. IS
Generate the initial  
trace with e.g. IS

Pick a variable 
to modify

52 + Normal(0,2)

Modify the value 
by e.g. adding a small 
amount of noise

56

57

54

54

56

New trace

Do we keep the new trace?

Yes, with probability A
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Metropolis-Hastings: an illustration 



Metropolis-Hastings MCMC: why can we re-weight?

The main technical requirement for MCMC is that the transition kernel  
      leaves the posterior invariant

If we sample   and then generate a  
new sample  from the transition kernel, 
  and  come from the same distribution

X ∼ p(X |Y)
X′ ∼ q(X′ |X, Y)

X X′ 

It is sufficient that the kernel satisfies the detailed balance criteria

q(X′ |X, Y)p(X |Y) = q(X |X′ , Y)p(X′ |Y) We have to be able to go 
 back to  from X X′ 

Acceptance criterion ensures that!
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General inference technique: doesn’t care what is in the program

• All programming constructs (loops, conditions, …) 
• All distributions (continuous and discrete) 
• Finite and infinite distribution traces
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Metropolis-Hastings: properties

Makes small changes to traces

Gradually goes to better traces

It might be difficult to capture a complex  
          distribution in small steps 

Especially when choices are correlated



Probabilistic inference 
Metropolis-Hastings MCMC



Importance sampling: makes all choices at once

Metropolis-Hastings: modify one choice at a time



Importance sampling: makes all choices at once

Metropolis-Hastings: modify one choice at a time

Can we do better?



Particle filters
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Particle filters
(1) (2) (3) (4)

Initialise N traces/programs

Run them until the first observe statement

0.32 0.05 0.07 0.45 And check how well they match the observations

Then, resample traces with replacement  
          proportional to how well they match observations(4) (1) (4) (4)

0.320.45 0.450.45



Particle filters
(4) (1) (4) (4)

Run until the next observe and resample



Particle filters
(4) (1) (4) (4)

Run until the next observe and resample

Continue until each program is finished



Properties of Particle filtering

General inference technique: doesn’t care what is in the program

• All programming constructs (loops, conditions, …) 
• All distributions (continuous and discrete) 
• Finite and infinite distribution traces
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Particle filters

Good mixture between IS and MH

Often very good solution to complex programs

Doesn’t not support every programs

What to do if all initial samples are bad?

  Particle filters with rejuvenation (perform Metropolis-Hastings 
                      on the traces before sampling)
→



Summary

Calculating  exactly is not possible for non-toy problemsp(x, y)

We have to rely on Monte Carlo approximations

Inference procedures need to be able to handle any kind of program

Importance sampling

Metropolis-Hastings MCMC

Particle filtering


