CS4340: Probabilistic Programming Seminar

Lecture 1




A coin is tossed 3 times.
What is the probability that at least one head was obtained?



All face cards are removed from a pack of 52 well-shuffled cards.
From the remaining 40 cards, 4 cards are drawn randomly.
What is the probability that 4 cards are from different suits and denominations?



What is the probability of Deltt flooding
after a 5-day constant rain of 50 mm in Leidschendam?



All these questions fit the same format:

What is the probability of X given Y, p(XIY)?



What is the probability of X given Y, p(XIY)?

The ability to answer this question is essential for trustworthy Al



What is the probability of X given Y, p(XIY)?

This course will be

® About computing this quantity
e \While making X, Y, and p(X|Y) complicated/complex
e Fven without knowing what X, Y, and p(X[|Y) are



Outline tfor today

® \What this course is about: probabilistic programming
® \What are probabilistic programs?

® The anatomy of a probabilistic program

® How will the course work



Wait a minute....

Isn't p(X]Y) just a classifier? We did the in a machine learning course.



Discriminative ML

o(X]Y) —=  f(lx)=y

® \Weak assumptions about the process
® Only rely on data, needs lots of data
® Difficult to impart human input, and get it from the system

® Poor at estimating uncertainty



Generative ML

p(X]Y) = p(X)Y)

® Strong assumptions about the process
® \Works with little or no data

® Flexible



Stuff you can't see Bayesian Inference

but want to know

- Model

‘Latent Variable® “Observation”

"Likelihood” "Prior’

e (y X)pg (X) :
“Posterior” p 9 (y) ."'-."'.;‘5‘_";-'- 3
‘Evidence” % =i




Probabilistic reasoning

Stuff you can observe Stuff you can't see How what we see \¥hat stuff is allowed
but want to know gets generated
po(y,X) = pa(y|x)pe(x)

“Joint” ‘Likelihood” “Prior”

Parameters



A few more detailed examples



What are we interested in? What can we observe?

Particle types LHC detector response



Standard model/ATLAS detector simulator ATLAS detector observations
1M+ C++ LOC

Baydin et al. Efficient Probabilistic Inference in the Quest for Physics Beyond the Standard Model. NeurlPS 2019
Baydin et al. Etalumis: Bringing probabilistic programming to scientific simulators at scale. In SC ‘19
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Baydin et al. Efficient Probabilistic Inference in the Quest for Physics Beyond the Standard Model. NeurlPS 2019
Baydin et al. Etalumis: Bringing probabilistic programming to scientific simulators at scale. In SC ‘19



What can we observe?

What are we interested in?

Particle types LHC detector response

Composite part temperature over time Over and surface temperature over time
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Munk, Scibior, Baydin, Stewart, Fernlund, Poursartip, Wood. Deep Probabilistic Surrogate Networks for Universal Simulator Approximation. arXiv 1910.11950
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Munk, Scibior, Baydin, Stewart, Fernlund, Poursartip, Wood. Deep Probabilistic Surrogate Networks for Universal Simulator Approximation. arXiv 1910.11950



What can we observe?

What are we interested in?

Particle types LHC detector response
Composite part temperature over time Over and surface temperature over time

Infection rate of disease Infections over time



FRED Epidemiological Simulator
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https.//github.com/plai-group/covid



What can we observe?

What are we interested in?

Particle types LHC detector response
Composite part temperature over time Over and surface temperature over time
Infection rate of disease Infections over time

A skill of a player Match outcomes
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TrueMatch

The TrueMatch matchmaking system decides which people should play together in
an online multiplayer game. The Coalition have announced that Gears 5 will use
TrueMatch.




Perception / Inverse Graphics

Captcha Solving
y X

l-pul lmogc Intermediate Iterations Final Inferred Image

5 HE 0

scene description

Mansinghka, Kulkarni, Perov, and Tenenbaum.
"Approximate Bayesian image interpretation using

generative probabilistic graphics programs.” NIPS (2013).

Scene Description

Yy X
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Kulkarni, Kohli, Tenenbaum, Mansinghka

‘Picture: a probabilistic programming language for

scene perception." CVPR (2015).



Reinforcement Learning

X y
actions optimality
Wingate, Goodman, Roy, Kaelbling, and Tenenbaum. van de Meent, Tolpin, Paige, and Wood.
‘Bayesian policy search with policy priors." ‘Black-Box Policy Search with Probabilistic Programs.”

(IJCALI), 2011. (AISTATS), 2016.



Directed Procedural Graphics

Stable Static Structures

1

Procedural Graphics

simulation

constraint

Ritchie, Lin, Goodman, & Hanrahan.
Generating Design Suggestions under Tight Constraints
with Gradient-based Probabilistic Programming.

In Computer Graphics Forum, (2015)

Ritchie, Mildenhall, Goodman, & Hanrahan.
“Controlling Procedural Modeling Programs with
Stochastically-Ordered Sequential Monte Carlo.”

SIGGRAPH (2015)




How do we represent probabilistic models?



Your house has an alarm system against burglary.

You live in a seismically active area and the alarm system
can occasionally be set off by an earthquake.

You have two neighbours, Mary and John, who do not know each other.

't they hear the alarm they call you, but this is not guaranteed.



Burglary Earthquake

B E| T F
T T |0.95 0.05
T F | 0.94 0.06
F T |0.29 0.71
F_F | 0.0010.999




Burglary Earthquake

B E T F

T T | 0.85 0.05
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@hquake p( E )
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p(JIA)
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Bayesian networks perspective

p(B,E,A,M,J) = p(B) p(E) p(

) p(M|A) p(J|A)



What is difficult to do with Bayesian Networks?



What is difficult to do with Bayesian Networks?

Continuous values?
Changing number of variables?

Lots of variables?



From Bayesian networks to probabilistic programs

PPLs are programming languages with two special constructs

sample(E) sample a value from distribution Z

observe(l’, y) condition the variable y to have value
from distribution I'



From Bayesian networks to probabilistic programs

P(A[B,E)



From Bayesian networks to probabilistic programs

\ / earthquake =

/ \ alarm =
p(JIA)
P(M|A) maryCaIIs _

johnCalls =



From Bayesian networks to probabilistic programs

p(B) p(E) burglary = sample(Bernoulli(0.001))
\ / earthquake = sample(Bernoulli(0.001))

/ \ alarm = if burglary & earthquake
sample(Bernoulli(0.95))
i P cif .

maryCalls = sample(Bernoulli(0.99)) it alarm else ...

johnCalls = sample(Bernoulli(0.8)) if alarm else ...



From Bayesian networks to probabilistic programs

Det my_first_probabilistic_program():

burglary = sample(Bernoulli(0.001)) Prior

earthquake = sample(Bernoulli(0.001))

alarm = it burglary & earthquake
sample(Bernoulli(0.95))

maryCalls = sample(Bernoulli(0.99)) it alarm

johnCalls = sample(Bernoulli(0.8)) it alarm



From Bayesian networks to probabilistic programs

Det my_first_probabilistic_program():

burglary = sample(Bernoulli(0.001)) Prior

earthquake = sample(Bernoulli(0.001))

alarm = it burglary & earthquake
sample(Bernoulli(0.95))

maryCalls = sample(Bernoulli(0.99)) it alarm

johnCalls = sample(Bernoulli(0.8)) it alarm

johnCalls Posterior



From Bayesian networks to probabilistic programs

Det my_first_probabilistic_program():

burglary = sample(Bernoulli(0.001)) Prior

earthquake = sample(Bernoulli(0.001))

alarm = it burglary & earthquake
sample(Bernoulli(0.95))

maryCalls = sample(Bernoulli(0.99)) it alarm

johnCalls = sample(Bernoulli(0.8)) it alarm

observe(Bernoulli(1), alarm) Likelihood

johnCalls Posterior



PPLs look like 'normal’ programs but return distributions

Det my_first_probabilistic_program():

burglary = sample(Bernoulli(0.001))
earthquake = sample(Bernoulli(0.001))

alarm = it burglary & earthquake
sample(Bernoulli(0.95))

maryCalls = sample(Bernoulli(0.99)) it alarm

johnCalls = sample(Bernoulli(0.8)) it alarm
observe(Bernoulli(1), alarm)

johnCalls



PPLs look like 'normal’ programs but return distributions

Det my_first_probabilistic_program():

burglary = sample(Bernoulli(0.001))

earthquake = sample(Bernoulli(0.001)) \ 055-

0.50 —

alarm = it burglary & earthquake 0.45 —

sample(Bernoulli(0.95)) 0.40 —

> 0.35-

€ 0.30 -

maryCalls = sample(Bernoulli(0.99)) it alarm 2 0.5
Q

johnCalls = sample(Bernoulli(0.8)) it alarm i g'fg:

0.10 —

observe(Bernoulli(1), alarm) 0.050 —

0.0 -
johnCalls



Why programs?

The most expressive representation we have at the moment
Can represent any computable process
Therefore, we can probabilistically reason about anything computable

Interpretable!



Inputs: Student-t degrees of freedom v, error
scale o, data Y1.8 = {usa vs}le
m ¢—sample (normal (0,1))
¢ ¢-sample (normal (0,1))
obs-dist ¢ student-t (v)
fors=1,...,5do
d ¢ (vs — mus; — c¢)/o
observe (obs-dist, d)

p(m, e, y1.5|lv,0) = N(m;0,1) N(e; 0,1)
end for 2 (vs — Mus — C )

[ [ STUDENT-T

s=1

’V

e A S A

return m, c o

Inputs: Transition std-dev o, output shape
a, output rate 3, data y;.r ° ° o @ o
: Ip € )
tr-dist ¢ normal (0,0)
obs-dist + gamma (a, 3) o ° @ °
fort=1,....T do
Tt ¢ Ty_1+sample (tr-dist)
observe (obs-dist, y; — T¢)
z ¢ l(z; > 4)
end for
return z,.r

p(xl:'l'e yl:'I‘laﬁ o, 48) -
N(zq;0, 02) GAMMA(y; — 215 ¢, 3)

1
HN(:rt —24_1;0,0%) GAMMA (y; — 2¢; o, §)
t=2

L R AN >



Key elements of probabilistic programs

Models
et p(x,y)
7 7 i@

O)

Evaluators that automate Bayesian inference



Intuition



Intuition

- -

Parameters

e

Program

OQutput

CS



Intuition

Parameters
Program

CS Statistics



Intuition

Parameters
Program

Inference

)

CS Statistics



Intuition

Parameters Parameters
Program Program

I Output I | Observations |
CS

Probabilistic Programming Statistics

Inference

R




In your first-year probability course

events in which A happens
PA) = ——
All possible events

events in which A and B happen
PAIB)=————————F———F—————
events in which B happens



In your first-year probability course

events in which A happens
PA) = ——
All possible events

events in which A and B happen
PAIB)=————————F———F—————
events in which B happens

What is the probability that a probabilistic program defines?



A probabilistic program defines a distribution over traces

Trace: values returned by sample statements in one execution

T N
CROE [ TGRS | FACHES
=1 n=1

- I

"Prior” probs "Likelihood” probs

probabilities of sample probabilities of observe



Things to remember from this lecture

Probabilistic programs automate probabilistic inference

Many many problems can be naturally expressed as PP
How do we write probabilistic programs

What probabilistic programs specity



Topics: a grand tour

September 4, 2023
(W1 L1)

September /7, 2023
(W1 L2)

September 11, 2023
(W2 L1)

September 14, 2023
(W2 L2)

What is probabilistic programming?
What is model-based reasoning? The anatomy of a probabilistic program.
Course structure.

Generative thinking.
How to write probabilistic programs? What is the distribution probabilistic
program captures?

Basic inference procedures:
Enumeration, Rejection sampling, Importance Sampling, Metropolis-Hastings
MCMC, Sequential Monte Carlo (Particle filtering). Why do they work?

Implementation strategies.
Database view. Continuations. Message passing.



Topics: a grand tour

September 18, 2023 Gradient-directed probabilistic inference
(W3 L1)

September 21, 2023 Learning for inference

(W3 L2)

September 24 2023 Programs with stochastic support

(W4 L1)

September 28 2023 Programmable inference

(W4 L2)

October 2, 2023 Connection between probabilistic and logical reasoning
(W5 L1)

October 5, 2023 Probabilistic logic programming

(W5 L2)



Topics: a grand tour

October 9, 2023
(W6 L1)

October 12, 2023
(W6 L2)

October 16, 2023
(W7 L1)

October 19, 2023
(W7 L2)

October 23, 2023
(W8 L1)

October 26, 2023
(W8 L1)

Incremental and anytime inference

Deep probabilistic programming

Deep generative models

Generalised paradigms for probabilistic programming

No probability? No problem! Alternative sources of probabilities.

Learning probabilistic programs



All course practicalities

https://sebdumancic.github.io/courses/1_prob_prog/



https://sebdumancic.github.io/courses/1_prob_prog/

Course practicalities

This is a seminar course

| expect you to come prepared

| expect you to talk more than me

| expect you to do more than just learn the material

There is no textbook, we will use research papers



Course components

Paper reviews (0%)
Participation (10%)
Presentation (25%)

Research report (65%)



Course components: Presentation

Fach of you will present one paper

Your goal is to present the idea as understandable as possible
(and prepare discussion points)

Schedule a meeting with me at least 2 days in advance



Course components: Report

Design a research project without executing it

Four components:
- Topic description
- Relation to other topics in the course
- Analysis of the state of the art
- Research design(s). (What, How, Why, Wrong, Experiments)

Feedback time



Why take this course?

You are interested in a principled and unifying paradigm of Al

You want to become a truly Bayesian expert so that you know what your
Al models don’t know

You want to develop your research skills

You are interested in research



Why not take this course?

f you are looking for an easy course

f you are not in the mood for being out of your comfort zone



| ast remarks

Choose your papers by September 12

The course is suitable both for 1st and 2nd year of MSc

The ofticial PPL for the class if Gen.j|l



