

CS4340: Probabilistic Programming Seminar

Lecture 1

A coin is tossed 3 times. What is the probability that at least one head was obtained?

All face cards are removed from a pack of 52 well-shuffled cards. From the remaining 40 cards, 4 cards are drawn randomly. What is the probability that 4 cards are from different suits and denominations?

What is the probability of Delft flooding after a 5-day constant rain of 50 mm in Leidschendam?

All these questions fit the same format:

What is the probability of X given Y, p(XIY)?

What is the probability of X given Y, p(XIY)?

The ability to answer this question is essential for trustworthy AI

This course will be

- About computing this quantity
- While making X, Y, and p(X|Y) complicated/complex
- Even without knowing what X, Y, and p(X|Y) are

What is the probability of X given Y, p(XIY)?

- What this course is about: probabilistic programming
 - What are probabilistic programs?
 - The anatomy of a probabilistic program
- How will the course work

Outline for today

Wait a minute....

Isn't p(X|Y) just a classifier? We did the in a machine learning course.

Discriminative ML

p(X|Y)

- Weak assumptions about the process
- Only rely on data, needs lots of data
- Difficult to impart human input, and get it from the system
- Poor at estimating uncertainty

$$\rightarrow f(x) = y$$

Generative ML

- Strong assumptions about the process
- Works with little or no data
- Flexible

$p(X|Y) \rightarrow p(X,Y)$

"Posterior"

Bayesian Inference Model

"Prior" "Likelihood"

 $p_{\theta}(\mathbf{y})$

"Evidence"

Probabilistic reasoning

"Likelihood"

"Prior"

A few more detailed examples

What are we interested in?

Particle types

What can we observe?

LHC detector response

Standard model/ATLAS detector simulator ATLAS detector observations

Baydin et al. Efficient Probabilistic Inference in the Quest for Physics Beyond the Standard Model. NeurIPS 2019 Baydin et al. Etalumis: Bringing probabilistic programming to scientific simulators at scale. In SC '19

$p_{\theta}(\mathbf{y}|\mathbf{x})$

Particle type and momenta posterior

Baydin et al. Efficient Probabilistic Inference in the Quest for Physics Beyond the Standard Model. NeurIPS 2019 Baydin et al. Etalumis: Bringing probabilistic programming to scientific simulators at scale. In SC '19

ATLAS detector observation

What are we interested in?

Particle types

Composite part temperature over time

What can we observe?

LHC detector response

Over and surface temperature over time

What are we interested in?

Particle types

Composite part temperature over time

Infection rate of disease

What can we observe?

LHC detector response

Over and surface temperature over time

Infections over time

📮 probprog / pyprob			 O Unwatch 30 	★ Star 176 % Fork 17	
<> Code () Issues (4)	🕅 Pull requests 1 🔲 Pr	rojects 0 Wiki	Insights 🔅 Settings		
A PyTorch-based library for Manage topics	or probabilistic programming	and inference compilatio	n	Edit	
🕞 837 commits	រ្រៃ 6 branches	🛇 1 release	LE 5 contributors	ষ্ট্ৰ BSD-2-Clause	
Branch: master - New pull	request		Create new file Upload files	Find file Clone or download -	
gbaydin Update				Latest commit 2889e40 2 days ago FRED Epidemiologic	al Simulator
pyprob tests	F	PvPrc)b	2 days ago	
.gitignore	Applytics bug fi	J		EL AV	
Dockerfile	Add gdbm to D	• PPX			
	Create LICENSE				
README.md	Update README.md			FILL-A-E	7 TOL
setup.py	Start adding PPX		Max 1 at a Warm Delay	Day: 0, controlled: 0 uncontrol	olled: 0

337 commits	ំង 6 branches	🛇 1 relea
Branch: master - New p	ull request	
gbaydin Update		
pyprob		
tests		$\gamma V P$
.gitignore		J .
.travis.yml	Analytics bug fi	
Dockerfile	Add gdbm to D	• PP.
	Create LICENSE	
README.md	Update README.md	
setup.py	Start adding PPX	
E README.md		

build passing

https://github.com/plai-group/covid

What are we interested in?

- Particle types
- Composite part temperature over time
- Infection rate of disease
- A skill of a player

What can we observe?

LHC detector response

Over and surface temperature over time

Infections over time

Match outcomes

MATCHMAKING

This party is open to friends and recent players. Ready

PLAYLIST CONNECTION OPTIONS SOCIAL SETTINGS START MATCHMAKING FREE FOR ALL FASTEST (DEFAULT)

Select a playlist that suits your favorite play style.

TrueMatch

The TrueMatch matchmaking system decides which people should play together in an online multiplayer game. The Coalition have <u>announced</u> that Gears 5 will use TrueMatch.

Perception / Inverse Graphics

Captcha Solving

x y scene description image

Mansinghka, Kulkarni, Perov, and Tenenbaum. "Approximate Bayesian image interpretation using generative probabilistic graphics programs." NIPS (2013).

Kulkarni, Kohli, Tenenbaum, Mansinghka "Picture: a probabilistic programming language for scene perception." CVPR (2015).

Reinforcement Learning

Wingate, Goodman, Roy, Kaelbling, and Tenenbaum. "Bayesian policy search with policy priors." (IJCAI), 2011. Van de Meent, Tolpin, Paige, and Wood. "Black-Box Policy Search with Probabilistic Programs." (AISTATS), 2016.

Directed Procedural Graphics

Stable Static Structures

\mathbf{x}

simulation

Ritchie, Lin, Goodman, & Hanrahan. Generating Design Suggestions under Tight Constraints with Gradient-based Probabilistic Programming. In Computer Graphics Forum, (2015) **Procedural Graphics**

SIGGRAPH (2015)

How do we represent probabilistic models?

Your house has an alarm system against burglary.

You live in a seismically active area and the alarm system can occasionally be set off by an earthquake.

If they hear the alarm they call you, but this is not guaranteed.

You have two neighbours, Mary and John, who do not know each other.

Alarm

ΒE	т	F
T T	0.95	0.05
T F	0.94	0.06
F T	0.29	0.71
F F	0.001	0.999

p(B,E,A,M,J) = p(B) p(E) p(A|B,E) p(M|A) p(J|A)

Bayesian networks perspective

What is difficult to do with Bayesian Networks?

Continuous values? Changing number of variables? Lots of variables?

What is difficult to do with Bayesian Networks?

PPLs are programming languages with two special constructs

sample(Ξ) sample a value from distribution Ξ

Events become variables

Var burglary =

Var earthquake =

Var alarm =

Var maryCalls =

Var johnCalls =

Events become variables from which we sample

Var burglary = sample(Bernoulli(0.001))

Var earthquake = sample(Bernoulli(0.001))

Var alarm = if burglary & earthquake sample(Bernoulli(0.95)) elif

Var maryCalls = sample(Bernoulli(0.99)) if alarm else ...

Var johnCalls = sample(Bernoulli(0.8)) if alarm else ...

Def my_first_probabilistic_program():

Var burglary = sample(Bernoulli(0.001))

Var earthquake = sample(Bernoulli(0.001))

Var alarm = if burglary & earthquake elif

- sample(Bernoulli(0.95))
- Var maryCalls = sample(Bernoulli(0.99)) if alarm else ...
- Var johnCalls = sample(Bernoulli(0.8)) if alarm else ...

Prior

Def my_first_probabilistic_program():

Var burglary = sample(Bernoulli(0.001))

Var earthquake = sample(Bernoulli(0.001))

Var alarm = if burglary & earthquake elif

return johnCalls

- sample(Bernoulli(0.95))
- Var maryCalls = sample(Bernoulli(0.99)) if alarm else ...
- Var johnCalls = sample(Bernoulli(0.8)) if alarm else ...

Prior

Posterior

Def my_first_probabilistic_program():

Var burglary = sample(Bernoulli(0.001))

Var earthquake = sample(Bernoulli(0.001))

Var alarm = if burglary & earthquake elif

observe(Bernoulli(1), alarm)

return johnCalls

- sample(Bernoulli(0.95))
- Var maryCalls = sample(Bernoulli(0.99)) if alarm else ...
- Var johnCalls = sample(Bernoulli(0.8)) if alarm else ...

Prior

ikelihood

Posterior

PPLs look like 'normal' programs but return distributions

Def my_first_probabilistic_program():

Var burglary = sample(Bernoulli(0.001))

Var earthquake = sample(Bernoulli(0.001))

Var alarm = if burglary & earthquake elif

observe(Bernoulli(1), alarm)

return johnCalls

- sample(Bernoulli(0.95))
- Var maryCalls = sample(Bernoulli(0.99)) if alarm else ...
- Var johnCalls = sample(Bernoulli(0.8)) if alarm else ...

PPLs look like 'normal' programs but return distributions

Def my_first_probabilistic_program():

Var burglary = sample(Bernoulli(0.001))

Var earthquake = sample(Bernoulli(0.001))

Var alarm = if burglary & earthquake elif

observe(Bernoulli(1), alarm)

return johnCalls

- sample(Bernoulli(0.95))
- Var maryCalls = sample(Bernoulli(0.99)) if alarm else ...
- Var johnCalls = sample(Bernoulli(0.8)) if alarm else ...

The most expressive representation we have at the moment

Can represent any computable process

Therefore, we can probabilistically reason about anything computable

Interpretable!

Why programs?

Inputs: Student-t degrees of freedom ν , error scale σ , data $y_{1:S} = \{u_s, v_s\}_{s=1}^{S}$ 1: $m \leftarrow \texttt{sample} (\texttt{normal} (0,1))$ 2: $c \leftarrow \texttt{sample}(\texttt{normal}(0,1))$ 3: obs-dist \leftarrow **student-t** (ν) 4: for s = 1, ..., S do $d \leftarrow (v_s - mu_s - c)/\sigma$ 5: **observe** (obs-dist, d) 6: 7: end for 8: **return** *m*, *c*

Inputs: Transition std-dev σ , output shape α , output rate β , data $y_{1:T}$ 1: $x_0 \leftarrow 0$ 2: tr-dist $\leftarrow \text{normal}(0, \sigma)$ 3: obs-dist \leftarrow gamma (α, β) 4: for t = 1, ..., T do $x_t \leftarrow x_{t-1} + \text{sample} (tr-dist)$ 5: **observe** (obs-dist, $y_t - x_t$) 6: 7: $z_t \leftarrow \mathbb{I}(x_t > 4)$ 8: end for 9: return $z_{1:T}$

 $p(m, c, y_{1:S}|\nu, \sigma) = \mathcal{N}(m; 0, 1) \mathcal{N}(c; 0, 1)$ $\prod_{i=1}^{S} \text{Student-T}\left(\frac{v_s - mu_s - c}{\sigma}; \nu\right)$

$$\begin{split} p(x_{1:T}, y_{1:T} | \sigma, \alpha, \beta) &= \\ \mathcal{N}(x_1; 0, \sigma^2) \text{ Gamma}(y_1 - x_1; \alpha, \beta) \\ \prod_{t=2}^T \mathcal{N}(x_t - x_{t-1}; 0, \sigma^2) \text{ Gamma}(y_t - x_t; \alpha, \beta) \end{split}$$

Key elements of probabilistic programs

Programming Language Abstraction Layer

Models

$$p(\mathbf{x}, \mathbf{y})$$

$$p(\mathbf{x}|\mathbf{y}) = rac{p(\mathbf{x},\mathbf{y})}{p(\mathbf{y})}$$

Evaluators that automate Bayesian *inference*

CS

CS

Statistics

CS

Inference

Statistics

Inference

Probabilistic Programming

Statistics

In your first-year probability course

$$P(A) = \frac{\text{events}}{|A|}$$

 $P(A \mid B) = \frac{\text{events in which A and B happen}}{\text{events in which B happens}}$

s in which A happens Il possible events

In your first-year probability course

$$P(A) = \frac{\text{events}}{|A|}$$

$$P(A \mid B) = \frac{\text{events}}{\text{eve}}$$

What is the probability that a probabilistic program defines?

s in which A happens l possible events

s in which A and B happen

ents in which B happens

A probabilistic program defines a distribution over traces

Trace: values returned by sample statements in one execution

Things to remember from this lecture

Probabilistic programs automate probabilistic inference

Many many problems can be naturally expressed as PP

How do we write probabilistic programs

What probabilistic programs specify

September 4, 2023 (W1 L1)

September 7, 2023 (W1 L2)

September 11, 2023 (W2 L1)

September 14, 2023 (W2 L2)

What is probabilistic programming? Course structure.

Generative thinking. program captures?

Basic inference procedures: Enumeration, Rejection sampling, Importance Sampling, Metropolis-Hastings MCMC, Sequential Monte Carlo (Particle filtering). Why do they work?

Implementation strategies. Database view. Continuations. Message passing.

Topics: a grand tour

What is model-based reasoning? The anatomy of a probabilistic program.

How to write probabilistic programs? What is the distribution probabilistic

September 18, 2023 (W3 L1)	Gradient-direct
September 21, 2023 (W3 L2)	Learning for in

September 24 2023 (W4 L1) September 28 2023 (W4 L2)

Programs with stochastic support

Programmable inference

October 2, 2023 (W5 L1) October 5, 2023 (W5 L2)

Connection between probabilistic and logical reasoning

Probabilistic logic programming

Topics: a grand tour

ted probabilistic inference

ference

Incremental and	October 9, 2023 (W6 L1)
Deep probabilis	October 12, 2023 (W6 L2)
Deep generative	October 16, 2023 (W7 L1)
Generalised par	October 19, 2023 (W7 L2)

October 23, 2023	
(W8 L1)	
October 26, 2023	
(W8 L1)	

No probability? No problem! Alternative sources of probabilities.

Learning probabilistic programs

Topics: a grand tour

d anytime inference

stic programming

e models

radigms for probabilistic programming

https://sebdumancic.github.io/courses/1_prob_prog/

All course practicalities

Course practicalities

This is a seminar course

- I expect you to come prepared
- I expect you to talk more than me
- I expect you to do more than just learn the material
- There is no textbook, we will use research papers

Course components

Paper reviews (0%)

Participation (10%)

Presentation (25%)

Research report (65%)

Course components: Presentation

Each of you will present one paper

Your goal is to present the idea as understandable as possible (and prepare discussion points)

Schedule a meeting with me at least 2 days in advance

Course components: Report

Design a research project without executing it

Four components:

- Topic description
- Relation to other topics in the course
- Analysis of the state of the art

Feedback time

- Research design(s). (What, How, Why, Wrong, Experiments)

You are interested in a principled and unifying paradigm of AI

You want to become a truly Bayesian expert so that you know what your Al models don't know

You want to develop your research skills

You are interested in research

Why take this course?

Why not take this course?

If you are looking for an easy course

If you are not in the mood for being out of your comfort zone

Last remarks

Choose your papers by September 12

The course is suitable both for 1st and 2nd year of MSc

The official PPL for the class if Gen.jl