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Part I: Introduction



Part I: Introduction
Motivation



Let’s play a game



Positive Negative



There is one object of each color 



Positive Negative



There are two objects in contact with one small and not blue



Let’s play a game



Input Output

inductive gxkvewfpk

logic ekiqn

programming ipkooctiqtr



Add two to each element and reverse



Let’s play a game



Positive Negative



There is a hydrogen receptor connected to two zinc sites with single bonds



Let’s play a game



Positive Negative



Let’s use ML on these problems 



What do we need?



Learn from small a number of examples



Playing Zendo with ML

Features



Playing Zendo with ML

Features
red blue green  
rectangle triangle square circle 
medium large small 
contact_p1 contact_p2 
contact_p3 contact_p4  
x_pos y_pos  
right_of_p1 left_of_p1 ...



Playing Zendo with ML
red green blue triangle rectan

gle square circle contac
t_p1

contac
t_p2

contac
t_p3

contac
t_p4 small mediu

m large

piece1 0 1 0 0 0 1 0 0 1 0 0 1 0 0

piece2 0 0 1 1 0 0 0 1 0 0 0 1 0 0

piece3 1 0 0 0 0 0 1 0 0 0 0 0 1 0

piece4 0 1 0 1 0 0 0 0 0 0 0 0 1 0



Learn explainable solutions



Understanding networks with ML

Features

hacc hdonor  
zincsite  
singlebond_a1 singlebond_a2 
singlebond_a1 doublebond_a1 
doublebond_a2 doublebond_a3 
distance_a1 distance_a2 
distance_a3...



Understanding networks with ML
hacc hdonor zincsite singlebond

_a1
singlebond

_a2
singlebond

_a3
doublebon

d_a1
doublebon

d_a2
doublebon

d_a3

a1 0 0 1 0 1 0 0 0 0

a2 0 1 0 1 0 1 0 0 0

a3 1 0 0 0 1 0 0 0 0

a4 1 0 0 0 0 1 0 0 0



Learn from highly relational data



Breaking the cipher with ML

Features

Input Output

inductive gxkvewfpk

logic ekiqn

programming ipkooctiqtr

input_1_a input_1_b input_1_c 
input_2_a input_2_b input_2_c 
input_3_a input_3_b input_3_c 
...



Breaking the cipher with ML
input_1_a input_1_b input_1_c input_1_i input_1_j input_1_k input_1_l input_1_m input_1_p

inductive 0 0 0 1 0 0 0 0 0

logic 0 0 0 0 0 0 1 0 0

programmin
g 0 0 0 0 0 0 0 0 1

Input Output

inductive gxkvewfpk

logic ekiqn

programming ipkooctiqtr



Breaking the cipher with ML

a   b   c   d   e  f   g   h   i   j …

Shift by 3



Breaking the cipher with ML

a   b   c   d   e  f   g   h   i   j …

Shift by 3

0   1   2   3   4   5   6   7

Reverse

Indices of an array



Learn from small a number of examples 

Explainable solutions 

Learn from highly relational data





What is ILP good at?



Learn from small a number of examples 

  

 



Learn from small a number of examples 

Explainable solutions 

 



Learn from small a number of examples 

Explainable solutions 

Learn from highly relational data



ILP is not a silver bullet











Goal of this tutorial

Developing intuition about ILP and its possibilities



Goal of this tutorial

For technical details, check the accompanying publication



Outline

1. Logic: What and why? 

2. Building an ILP system 

3. Features and applications 

4. Challenges and opportunities



Please ask questions and interrupt!



Part I: Introduction
What is ILP?



ML + logic



Data 
(features

ML 
algorithm

Model

ML



Examples

ILP 
algorithm

Model/
hypothesis

BK

ILP



Examples

ILP 
algorithm

Model/
hypothesis

BK

ILP

Logic program

Logic program

Logic program



Program synthesis



Logic refresher



Socrates is a man.
All men are mortal.
 
 



Socrates is a man.
All men are mortal.
———————————————
Therefore, Socrates is mortal.



Socrates is a man.
All men are mortal.
———————————————
Therefore, Socrates is mortal.

man(socrates).
∀A man(A) → mortal(A).
 
 



atom

rule

Socrates is a man.
All men are mortal.
———————————————
Therefore, Socrates is mortal.

man(socrates).
∀A man(A) → mortal(A).
 
 



if this side is true

then this side is true

Socrates is a man.
All men are mortal.
———————————————
Therefore, Socrates is mortal.

man(socrates).
∀A man(A) → mortal(A).
 
 



Socrates is a man.
All men are mortal.
———————————————
Therefore, Socrates is mortal.

man(socrates).
∀A man(A) → mortal(A).
———————————————
mortal(socrates).



∀A man(A) → mortal(A).

 

 

 

 

 

 



∀A man(A) → mortal(A).

⇊

man(A) → mortal(A).

 

 

 

 

variables are all 
universally quantified



∀A man(A) → mortal(A).

⇊

man(A) → mortal(A).

⇊

mortal(A) ← man(A).

 

 

flip the implication 
arrow direction



∀A man(A) → mortal(A).

⇊

man(A) → mortal(A).

⇊

mortal(A) ← man(A).

⇊

mortal(A):- man(A).replace the arrow with :-



∀A man(A) → mortal(A).

⇊

man(A) → mortal(A).

⇊

mortal(A) ← man(A).

⇊

mortal(A):- man(A).

valid Prolog / Datalog / ASP rule



∀A.∀B knows(A,B) ∧ rich(B) ∧ famous(B) → happy(A).

 

 

 

 

 

 



∀A.∀B knows(A,B) ∧ rich(B) ∧ famous(B) → happy(A).

⇊

knows(A,B) ∧ rich(B) ∧ famous(B) → happy(A).

 

 

 

 



∀A.∀B knows(A,B) ∧ rich(B) ∧ famous(B) → happy(A).

⇊

knows(A,B) ∧ rich(B) ∧ famous(B) → happy(A).

⇊

happy(A) ← knows(A,B) ∧ rich(B) ∧ famous(B).

 

 



∀A.∀B knows(A,B) ∧ rich(B) ∧ famous(B) → happy(A).

⇊

knows(A,B) ∧ rich(B) ∧ famous(B) → happy(A).

⇊

happy(A) ← knows(A,B) ∧ rich(B) ∧ famous(B).

⇊

happy(A):- knows(A,B), rich(B), famous(B).



What does this have to do with programming?



empty([]).
head([H|_],H).
tail([_|T],T).

Logic programs



empty([]).
head([H|_],H).
tail([_|T],T).

Logic programs



empty([]).
head([H|_],H).
tail([_|T],T).

Logic programs



empty([]).
head([H|_],H).
tail([_|T],T).

Logic programs



length([],0).
length([H|T],N2):- 
    length(T,N1), 
    N2 is N1+1.

Logic programs



length([],0).
length([H|T],N2):- 
    length(T,N1), 
    N2 is N1+1.

Logic programs



length([],0).
length([H|T],N2):- 
    length(T,N1), 
    N2 is N1+1.

Logic programs



Any questions?



Why logic programs?

Relational 
 
Declarative 

Interpretable 

Universal



Relational data





edge(oxford_circus, bond_street).
edge(oxford_circus, piccadilly_circus).
edge(south_kensington, gloucester_road).



connected(S1,S2):- edge(S1,S2).
connected(S1,S2):- edge(S1,S3), connected(S3,S2).



Declarative

Say what you what to happen, not how it should happen



zendo(A):- piece(A,C),contact(C,B),size(B,E),
           small(E),color(B,D),not_blue(D).

Can execute/evaluate the rule in any order. If any literal fails, the whole rule fails.



zendo(A):- piece(A,C),contact(C,B),size(B,E),
           small(E),color(B,D),not_blue(D).
zendo(A):- piece(A,C),contact(C,B),size(B,E),
           small(E),color(B,D),not_red(D).

If any rule succeeds, the whole program succeeds.



Interpretable

zendo(A):- piece(A,C),contact(C,B),size(B,E),
           small(E),color(B,D),not_blue(D).
zendo(A):- piece(A,C),contact(C,B),size(B,E),
           small(E),color(B,D),not_red(D).

You can understand this program without having to take a course in logic programming!



Universal



Universal



Universal



Universal



Why not logic programs?

Less control 

Few people use them 

Iffy software



Questions?



Break time



Part I: Introduction
What is ILP?



Zendo in DT



Zendo in DT
p1_notblue
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p1_notblue
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Zendo in DT
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Zendo in ILP



Zendo in ILP % positive example
pos(zendo(structure1)).

% background knowledge
piece(structure1, p1).
piece(structure1, p2).
green(p1).
blue(p2).
small(p1).
small(p2).
contact(p1,p2).
x_pos(p1,1).
x_pos(p2,1).



Zendo in ILP



Zendo in ILP

zendo(A):-
    piece(A,C),
    contact(C,B),
    size(B,E),
    small(E),
    color(B,D),
    not_blue(D).



Encryption in DT
input_1_a

output_10_c

yes no

input_1_b

input_2_a

yes yes no

input_1_c

yes

noyes no

input_2_b input_1_d
no

yes

...

...

noyes

... ... ...

Input Output
inductive gxkvewfpk

logic ekiqn

programming ipkooctiqtr

noyes

... ...

output_9_b

...



Encryption in ILP



Encryption in ILP
% positive examples
pos(f([i,n,d,u,c,t,i,v,e],[g,x,k,v,e,w,f,p,k])).
pos(f([l,o,g,i,c],[e,k,i,q,n])).
pos(f([p,r,o,g,r,a,m,m,i,n,g],[i,p,k,o,o,c,t,i,q,t,r])).

% background knowledge
head([H|_], H).
tail([_|T], T).
empty([]).
succ(A,B) :- B is A+1.
ord(a,97).
ord(b,98). 
inttochar(97,a). 
inttochar(98,b). 
...



Encryption in ILP

encryption(A,B):- 
map(A,C,inv_1),
reverse(C,B).

inv_1(A,B):-
ord(A,E),
succ(E,C),
succ(C,D),
inttochar(D,B).

Input Output

inductive gxkvewfpk

logic ekiqn

programming ipkooctiqtr



Networks in DT
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Networks in ILP



Networks in ILP % positive example
pharma(molecule1).

% negative example
pharma(molecule2).

% background knowledge
zincsite(a1).
hdonor(a2).
hacc(a3).
bond(a1,a2,single).
bond(a4,a5,double).
distance(a1,a2,1.57).
distance(a2,a3,1.26).
...



Networks in ILP



Networks in ILP pharma(A):-  
    zincsite(A,B),
    hacc(A,C),
    dist(A,B,C,D),
    leq(D,3.58),
    geq(D,1.78),
    hacc(A,E),
    hacc(A,F),
    bond(A,E,F,single).
pharma(A):-
    hacc(A,B),
    hacc(A,C),
    bond(A,B,C,double),
    dist(A,B,C,D),
    leq(D,2.78).



Recap
ILP can: 

• Generalise from small amount of data 

• Learns hypotheses that are understandable 

• Learn from relational data



Part 2: Building an ILP system



Part 2: Building an ILP system
How does ILP work?



We have told you that ILP is machine learning with logic.



Recap: Decision tree learning

Should I play tennis today?



Recap: Decision tree learning

Step one: what is the goal?

Separate positive examples from  
negative ones

How do we achieve that?

Reducing information gain



Recap: Decision tree learning

Step two: how do we represent data?

Tabular data



Recap: Decision tree learning

Step three: how do the models look like?

Recursively structured trees

Leaves assign labels to data

Every node is a feature test,  
 e.g., “is weather sunny?”

Tests split the data in subsets that  
(don’t) satisfy the test



Recap: Decision tree learning

Step four: What is the hypothesis space?

The set of all tree up to a certain depth



Recap: Decision tree learning

Step five: How do we search the hypothesis space?

From simpler to more complicated, 
step by step



Recap: Decision tree learning

From simpler to more complicated, 
step by step

Step five: How do we search the hypothesis space?

What is the best first feature to split on?



Recap: Decision tree learning

Step five: How do we search the hypothesis space?

What is the best first feature to split on?

Select and commit!

From simpler to more complicated, 
step by step



Recap: Decision tree learning

Step five: How do we search the hypothesis space?

What is the best feature to take next, 
for points that satisfy the previous criteria?

From simpler to more complicated, 
step by step



Recap: Decision tree learning

Step five: How do we search the hypothesis space?

What is the best feature to take next, 
for points that satisfy the previous criteria?

Select and commit!

From simpler to more complicated, 
step by step



Recap: Decision tree learning

Step five: How do we search the hypothesis space?

What is the best feature to take next, 
for points that did not satisfy  
the previous criteria?

From simpler to more complicated, 
step by step



Recap: Decision tree learning

Step one: what is the goal?

Step two: how do we represent data?

Step three: how do the models look like?

Step four: What is the hypothesis space?

Step five: How do we search the hypothesis space?



From decision trees to ILP

Step one: what is the goal?



From decision trees to ILP

Step one: what is the goal?

Still the same, splitting positive  from negative examples



From decision trees to ILP

Step one: what is the goal?

Step two: how do we represent data?



From decision trees to ILP

Step one: what is the goal?

Step two: how do we represent data?

As logic programs (facts)

weather(day1, sunny). 
temperature(day1, 80). 
humidity(day1, high) 
wind(day1, weak).



From decision trees to ILP

Step one: what is the goal?

Step two: how do we represent data?

Step three: how do the models look like?



From decision trees to ILP

Step one: what is the goal?

Step two: how do we represent data?

Step three: how do the models look like?

As logic programs

play(Day, yes)  weather(Day, sunny), wind(Day, weak)←



From decision trees to ILP

Step one: what is the goal?

Step two: how do we represent data?

Step three: how do the models look like?

Step four: What is the hypothesis space?



From decision trees to ILP

Step one: what is the goal?

Step two: how do we represent data?

Step three: how do the models look like?

Step four: What is the hypothesis space?

All valid logic programs



From decision trees to ILP

Step one: what is the goal?

Step two: how do we represent data?

Step three: how do the models look like?

Step four: What is the hypothesis space?

Step five: How do we search the hypothesis space?



From decision trees to ILP

Step one: what is the goal?

Step two: how do we represent data?

Step three: how do the models look like?

Step four: What is the hypothesis space?

Step five: How do we search the hypothesis space?

See the rest of the tutorial





Why do we want to represent everything in logic?



Part 2: Building an ILP system
How does ILP work? 
Representation language



Which logic programming language?



Propositional logic

red green blue triangle rectangle square circle contact_p1 contact_p2 contact_p3 contact_p4 small medium large
piece1 0 1 0 0 0 1 0 0 1 0 0 1 0 0

piece2 0 0 1 1 0 0 0 1 0 0 0 1 0 0

piece3 1 0 0 0 0 0 1 0 0 0 0 0 1 0

piece4 0 1 0 1 0 0 0 0 0 0 0 0 1 0

piece1_green.
piece2_blue.
piece2_triangle.
piece1_contact_p2.
piece4_triangle.



Propositional logic

Limited expressivity (same as DT learners) 

Difficult to model problems (not relational)  

No recursion



Full first-order logic

Intractable

∀A.∃B.∀C right(A,B) ∧ right(B,C) ∧ blue(A) ∧ red(B) → contact(A,B) ∨ ¬ square(B).



Horn logic

The foundation of most automated reasoning used in SAT etc

zendo(A) ← piece(A,B), blue(B). 
blue(p1).



Horn logic
Important for resolution because: 

- the resolvent of two Horn clauses is itself a Horn clause 
- the resolvent of a goal clause and a definite clause is a goal clause



Prolog

Search uses SLD-resolution (backwards chaining)



Prolog advantages

Turing complete 

Lists and complex data structures 

Complex numerical reasoning



Prolog disadvantages

Not guaranteed to terminate



Datalog

Definite programs without functional symbols and minor syntactic restrictions



Datalog advantages

Guaranteed to terminate 

Sufficient for most problems in this tutorial 

Has nice properties, such as a unique minimal model



Datalog disadvantages

Not Turing complete (no functional symbols)



Database vs program

If it uses logical function symbols, it is considered a program.  

If it does not, it is considered a database.



Monotonicity

A logic is monotonic when adding knowledge to it does not reduce 
the logical consequences of that theory. 



Monotonicity

A logic is non-monotonic if some conclusions can be removed/
invalidated by adding more knowledge.



Monotonic logic

%% program
sunny.
happy:- sunny.

%% consequences
sunny.
happy.



Monotonic logic

%% program
sunny.
happy:- sunny.

%% consequences
sunny.
happy.

%% program
sunny.
happy:- sunny.
happy:- rich.

%% consequences
sunny.
happy.



Non-monotonic programs

Most use negation-as-failure (NAF) (Clark, 1977).  

An atom is false if it cannot be proven true. 



Non-monotonic logic

%% program
sunny.
happy:- sunny, not weekday. 

%% consequences
sunny.
happy.



Non-monotonic logic

%% program
sunny.
happy:- sunny, not weekday. 

%% consequences
sunny.
happy.

%% program
sunny.
happy:- sunny, not weekday. 
weekday.

%% consequences
sunny.
weekday.



Non-monotonic logic

+ more compact representations 

- more difficult to learn, especially recursive programs



Answer set programming

Language extensions over Datalog, such as choice rules and constraints



Answer set programming

Language extensions over Datalog, such as choice rules and constraints

A high-level modelling language for SAT/MaxSAT



Break time



Part 2: Building an ILP system
How does ILP work? 
Search direction



ILP is search

How do we search the hypothesis space?



Subsumption



Subsumption



Specialisations

If we add a literal to a rule, it can only become more specific and 
entail fewer examples



Specialisations

happy(A):-
    lego_builder(A).

happy(A):-
    lego_builder(A),
    enjoys_lego(A)

subsumes



Generalisations

If we add a rule to a program, it can only become more general 
and entail more examples

only holds for monotonic logic!



Generalisations

happy(A):- lego_builder(A), enjoys_lego(A)

happy(A):- lego_builder(A), enjoys_lego(A).
happy(A):- lego_builder(A), knows(A,B), enjoys_lego(B).

subsumes



happy(alice):-
    lego_builder(alice),
    enjoys_lego(alice),
    knows(alice,edith),
    knows(edith,alice),
    has_friend(alice).

happy(A).

happy(A):-
    lego_builder(A).

happy(A):-
    enjoys_lego(A).

happy(A):-
    knows(A,B).

happy(alice):-
    lego_builder(A),
    enjoys_lego(A).

happy(A):-
    knows(A,edith).

Subsumption lattice



Top-down

Start with a general hypothesis and iteratively specialise it

FOIL, TILDE, HYPER,  QuickFOIL, Progol*, Aleph*



happy(alice):-
    lego_builder(alice),
    enjoys_lego(alice),
    knows(alice,edith),
    knows(edith,alice),
    has_friend(alice).

happy(A).

happy(A):-
    lego_builder(A).

happy(A):-
    enjoys_lego(A).

happy(A):-
    knows(A,B).

happy(alice):-
    lego_builder(A),
    enjoys_lego(A).

happy(A):-
    knows(A,edith).



Top-down

Use example coverage to guide the search, such as through hill climbing and A*



Top-down

1. Find a good rule that covers some of the positive examples and 
add it to the program 

2. Repeat but focus on `uncovered` examples



Top-down advantages

Recursion



Top-down disadvantages

Inefficient 

Constants



Bottom-up

Start with a specific hypothesis and iteratively generalise it

CIGOL, GOLEM, XHAIL, Progol*, Aleph*



Bottom-up

happy(alice):-
    lego_builder(alice),
    enjoys_lego(alice),
    knows(alice,edith),
    knows(edith,alice),
    has_friend(alice).

happy(A).

happy(A):-
    lego_builder(A).

happy(A):-
    enjoys_lego(A).

happy(A):-
    knows(A,B).

happy(alice):-
    lego_builder(A),
    enjoys_lego(A).

happy(A):-
    knows(A,edith).



Bottom-up

Use example coverage to guide the search, such as through hill climbing and A*



Bottom-up advantages

Fast  

Constants



Bottom-up disadvantages

Optimality (overfitting) 

Recursion 



Top-down and bottom-up

Bottom-up: 
1. Find the most specific rule R for each example 

Top-down 
2. Search the generalisations of R in a top-down way

Progol, Aleph



Top-down and bottom-up

Search is bound from below by step 1.  

Solutions generalise well because of Step 2.



Top-down and bottom-up advantages

Efficiency 

Large rules 

Many rules



Top-down and bottom-up disadvantages

Overfitting 
  
Recursion 

Predicate invention



Meta-level

Search all over

ASPAL, Metagol, ILASP, HEXMIL, DILP, Apperception, Popper



Meta-level

happy(alice):-
    lego_builder(alice),
    enjoys_lego(alice),
    knows(alice,edith),
    knows(edith,alice),
    has_friend(alice).

happy(A).

happy(A):-
    lego_builder(A).

happy(A):-
    enjoys_lego(A).

happy(A):-
    knows(A,B).

happy(alice):-
    lego_builder(A),
    enjoys_lego(A).

happy(A):-
    knows(A,edith).



Meta-level

happy(alice):-
    lego_builder(alice),
    enjoys_lego(alice),
    knows(alice,edith),
    knows(edith,alice),
    has_friend(alice).

happy(A).

happy(A):-
    lego_builder(A).

happy(A):-
    enjoys_lego(A).

happy(A):-
    knows(A,B).

happy(alice):-
    lego_builder(A),
    enjoys_lego(A).

happy(A):-
    knows(A,edith).



Meta-level

Use a dedicated solver (SAT/SMT/ASP) to perform to search



Meta-level advantages

Recursion 

Completeness 

Optimality



Meta-level disadvantages

Small domains 

Small rules



Part 2: Building an ILP system
How does ILP work? 
Language bias



How to define the hypothesis space?

The hypothesis is the space of all possible hypotheses that can be built. 
An inductive bias is essential to restrict the hypothesis space.



Mode declarations

Specify which symbols may appear in rules (and their types and directions) 



Mode declarations

modeh(*,target(+list,-char)).
modeb(*,member(+list,-char)).
modeb(*,tail(+list,-list)).
modeb(*,empty(+list)).

Specify which symbols may appear in rules (and their types and directions) 



Mode declarations

target(A,B):- member(A,B).

Specify which symbols may appear in rules (and their types and directions) 

modeh(*,target(+list,-char)).
modeb(*,member(+list,-char)).
modeb(*,tail(+list,-list)).
modeb(*,empty(+list)).



Mode declarations

target(A,B):- member(A,B).

target(A,B):- tail(A,C), member(C,B).

Specify which symbols may appear in rules (and their types and directions) 

modeh(*,target(+list,-char)).
modeb(*,member(+list,-char)).
modeb(*,tail(+list,-list)).
modeb(*,empty(+list)).



Mode declarations

target(A,B):- member(A,B).

target(A,B):- tail(A,C), member(C,B).

target(A,B):- tail(A,C), tail(C,B).

Specify which symbols may appear in rules (and their types and directions) 

modeh(*,target(+list,-char)).
modeb(*,member(+list,-char)).
modeb(*,tail(+list,-list)).
modeb(*,empty(+list)).



Part 3: features



Recursion



connected(A,B):- edge(A,B).
 
 
 

Recursion



connected(A,B):- edge(A,B).
connected(A,B):- edge(A,C),edge(C,B).
 
 

Recursion



connected(A,B):- edge(A,B).
connected(A,B):- edge(A,C),edge(C,B).
connected(A,B):- edge(A,C),edge(C,D),edge(D,B).
 

Recursion



connected(A,B):- edge(A,B).
connected(A,B):- edge(A,C),edge(C,B).
connected(A,B):- edge(A,C),edge(C,D),edge(D,B).
connected(A,B):- edge(A,C),edge(C,D),edge(D,E),edge(E,B).

Recursion



connected(A,B):- edge(A,B).
connected(A,B):- edge(A,C),edge(C,B).
connected(A,B):- edge(A,C),edge(C,D),edge(D,B).
connected(A,B):- edge(A,C),edge(C,D),edge(D,E),edge(E,B).

• Cannot generalise to arbitrary depth 

• Difficult to learn because of its size

Recursion



connected(A,B):- edge(A,B).
 

Recursion



connected(A,B):- edge(A,B).
connected(A,B):- edge(A,C),connected(C,B).

Recursion



connected(A,B):- edge(A,B).
connected(A,B):- edge(A,C),connected(C,B).

Recursion

• Easier to learn because of its size 

• Need fewer examples



Automatically invent new symbols

Predicate invention



greatgrandparent(A,B):- mother(A,C),mother(C,D),mother(D,B).
 
 
 

Predicate invention



greatgrandparent(A,B):- mother(A,C),mother(C,D),mother(D,B).
greatgrandparent(A,B):- mother(A,C),mother(C,D),father(D,B).
 
 

Predicate invention



greatgrandparent(A,B):- mother(A,C),mother(C,D),mother(D,B).
greatgrandparent(A,B):- mother(A,C),mother(C,D),father(D,B).
greatgrandparent(A,B):- mother(A,C),father(C,D),mother(D,B).
 

Predicate invention



greatgrandparent(A,B):- mother(A,C),mother(C,D),mother(D,B).
greatgrandparent(A,B):- mother(A,C),mother(C,D),father(D,B).
greatgrandparent(A,B):- mother(A,C),father(C,D),mother(D,B).
greatgrandparent(A,B):- mother(A,C),father(C,D),father(D,B).

Predicate invention



greatgrandparent(A,B):- mother(A,C),mother(C,D),mother(D,B).
greatgrandparent(A,B):- mother(A,C),mother(C,D),father(D,B).
greatgrandparent(A,B):- mother(A,C),father(C,D),mother(D,B).
greatgrandparent(A,B):- mother(A,C),father(C,D),father(D,B).
greatgrandparent(A,B):- father(A,C),father(C,D),father(D,B).
greatgrandparent(A,B):- father(A,C),father(C,D),mother(D,B).
greatgrandparent(A,B):- father(A,C),mother(C,D),father(D,B).
greatgrandparent(A,B):- father(A,C),mother(C,D),mother(D,B).

Predicate invention



greatgrandparent(A,B):- mother(A,C),mother(C,D),mother(D,B).
greatgrandparent(A,B):- mother(A,C),mother(C,D),father(D,B).
greatgrandparent(A,B):- mother(A,C),father(C,D),mother(D,B).
greatgrandparent(A,B):- mother(A,C),father(C,D),father(D,B).
greatgrandparent(A,B):- father(A,C),father(C,D),father(D,B).
greatgrandparent(A,B):- father(A,C),father(C,D),mother(D,B).
greatgrandparent(A,B):- father(A,C),mother(C,D),father(D,B).
greatgrandparent(A,B):- father(A,C),mother(C,D),mother(D,B).

Predicate invention

• Difficult to learn because of its size 

• Need many examples



greatgrandparent(A,B):- inv(A,C),inv(C,D),inv(D,B).
inv(A,B):- mother(A,B).
inv(A,B):- father(A,B).

Predicate invention



greatgrandparent(A,B):- inv(A,C),inv(C,D),inv(D,B).
inv(A,B):- mother(A,B).
inv(A,B):- father(A,B).

• Easier to learn because of its size 

• Need fewer examples

Predicate invention



Predicate invention + recursion

The combination is essential to learn many complex problems

Irene Stahl: The Appropriateness of Predicate Invention as Bias Shift Operation in ILP. Mach. 
Learn. 20(1-2): 95-117 (1995).



Predicate invention + recursion

Find the maximum value of a list and add it to every element



Predicate invention + recursion

f(A,B):- inv1(A,Max), ….
inv1(A,B):- head(A,B), empty(B).
inv1(A,B):- head(A,B), inv1(A,C), B>C. 
inv1(A,B):- head(A,C), inv1(A,B), B=<D. 



Predicate invention + recursion

f(A,B):- inv1(A,Max), inv2(A,Max,B).
inv1(A,B):- head(A,B), empty(B).
inv1(A,B):- head(A,B), inv1(A,C), B>C. 
inv1(A,B):- head(A,C), inv1(A,B), B=<D. 
inv2(A,Max,B):- empty(A), empty(B).
inv2(A,Max,B):- prepend(H1,T1,A), add(Max,H1,H2), 

inv2(T1,Max,T2), prepend(H2,T2,B).



Negation



Negation



Predicate invention + negation



Predicate invention + negation

“there are two red cones”



Predicate invention + negation

f(S):- cone(S,A),red(A),cone(S,B),red(B),all_diff(A,B).



Predicate invention + negation



Predicate invention + negation

“there are exactly two cones and both are red” 
or  

“there are exactly three cones and all three are red”



Predicate invention + negation

very messy program here



Predicate invention + negation

f(S):- not inv1(S).
inv1(S):- cone(S,P), not red(P).



Predicate invention + negation

f(S):- not inv1(S).
inv1(S):- cone(S,P), not red(P).

there is a cone that is not red



Predicate invention + negation

f(S):- not inv1(S).
inv1(S):- cone(S,P), not red(P).

there is a cone that is not red

it is not true that there is a cone that is not red



Predicate invention + negation

f(S):- not inv1(S).
inv1(S):- cone(S,P), not red(P).

all the cones are red



Higher-order invention

Input Output

[alice,bob,charlie] [alic,bo,charli]

[inductive,logic,programming] [inductiv,logi,programmin]

[ferrara,orleans,london,kyoto] [ferrar,orlean,londo,kyot]

Cropper, Morel, and Muggleton, “Learning higher-order logic programs”, MLJ 2020



Higher-order invention

f(A,B):-map(A,B,inv1).
inv1(A,B):-inv2(A,C),tail(C,D),inv2(D,B).
inv2(A,B):-reduceback(A,B,concat).



Higher-order invention

f(A,B):-map(A,B,inv1).
inv1(A,B):-inv2(A,C),tail(C,D),inv2(D,B).
inv2(A,B):-reduceback(A,B,concat).

invents reverse



Higher-order invention

f(A,B):-map(A,B,inv1).
inv1(A,B):-inv2(A,C),tail(C,D),inv2(D,B).
inv2(A,B):-reduceback(A,B,concat).

invents reverse

invents droplast



Higher-order invention

f(A,B):-map(A,B,inv1).
inv1(A,B):-inv2(A,C),tail(C,D),inv2(D,B).
inv2(A,B):-reduceback(A,B,concat).

invents reverse

reuses inv2
invents droplast



Higher-order invention

Input Output

[alice,bob,charlie] [alic,bo]

[inductive,logic,programming] [inductiv,logi]

[ferrara,orleans,london,kyoto] [ferrar,orlean,londo]



Higher-order invention

f(A,B):-map(A,C,inv1),inv1(C,B).
inv1(A,B):-inv2(A,C),tail(C,D),inv2(D,B).
inv2(A,B):-reduceback(A,B,concat).



Higher-order invention

f(A,B):-map(A,C,inv1),inv1(C,B).
inv1(A,B):-inv2(A,C),tail(C,D),inv2(D,B).
inv2(A,B):-reduceback(A,B,concat).

reuses droplast
invents droplast



Optimality: textual complexity
f(A):- element(A,1).
f(A):- element(A,2).
f(A):- element(A,3).
f(A):- element(A,4).
f(A):- element(A,5).
f(A):- element(A,6).
f(A):- element(A,7).
f(A):- element(A,8).
f(A):- element(A,9).
f(A):- element(A,10).



Optimality: textual complexity

f(A):- element(A,101),element(A,102).



Optimality: efficiency

input output
sheep e

alaca a

chicken ?

Cropper & Muggleton, “Learning efficient logic programs”, MLJ 2019



Optimality: efficiency

input output
sheep e

alaca a

chicken c



f(A,B):- head(A,B),tail(A,C),element(C,B).
f(A,B):- tail(A,C),f(C,B).

Optimality: efficiency



f(A,B):- head(A,B),tail(A,C),element(C,B).
f(A,B):- tail(A,C),f(C,B).

O(n^2)

Optimality: efficiency



f(A,B):- mergesort(A,C),inv1(C,B).
inv1(A,B):- head(A,B),tail(A,C),head(C,B).
inv1(A,B):- tail(A,C),inv1(C,B).

Optimality: efficiency



O(n log n)

f(A,B):- mergesort(A,C),inv1(C,B).
inv1(A,B):- head(A,B),tail(A,C),head(C,B).
inv1(A,B):- tail(A,C),inv1(C,B).

Optimality: efficiency



Predicate invention and recursion!

f(A,B):- mergesort(A,C),inv1(C,B).
inv1(A,B):- head(A,B),tail(A,C),head(C,B).
inv1(A,B):- tail(A,C),inv1(C,B).

Optimality: efficiency



• noisy examples 

• noisy BK

Noise



Noisy examples

Almost all ILP systems handle noisy examples!



Noisy examples

Sequential covering or divide-and-conquer 
- Aleph, Progol, FOIL, TILDE, ATOM, QuickFOIL 



Noisy examples

Solver optimisation 
- ILASP, Popper



Noisy BK

Almost no ILP systems handle noisy BK!



Numerical data

Hocquette & Cropper, “Relational program synthesis with numerical reasoning”, AAAI 2023



Numerical data

zendo(A):- piece(A,B),contact(B,C),size(C,D),geq(D,7).



Numerical data

equilibrium(A):- mass(A,B),forces(A,C),sum(C,D),mult(B,9.807,D).



Numerical data

pharma(A):- zinc(A,B), hacc(A,C), dist(A,B,C,D), leq(D,4.18), geq(D,2.22).
pharma(A):- hacc(A,C), hacc(A,E), dist(A,B,C,D), geq(D,1.23), leq(D,3.41).
pharma(A):- zinc(A,C), zinc(A,B), bond(B,C,du), dist(A,B,C,D), leq(D,1.23).



Break time



Part 4: ILP systems



TILDE

Divide-and-conquer strategy: recursively split the data 

using a conjunction with the highest information gain



TILDE
Given: 
- Classes C 
- Mode declarations M  
- Positive (E+) and negative (E-) examples as interpretations  
- BK in the form of a definite program 

   
  
  
  



TILDE
Given: 
- Classes C 
- Mode declarations M  
- Positive (E+) and negative (E-) examples as interpretations  
- BK in the form of a definite program 

Return:  
A normal program hypothesis H such that:  
- H is consistent with M 
- H is complete and consistent



TILDE



Advantages: 
- Can learn normal logic programs 
- Supports both categorical and numerical data 

Disadvantages: 
- Does not support recursion 
- Need for lookahead

TILDE



ASPAL

1. Generate all possible rules 



ASPAL

1. Generate all possible rules 

2. Use an ASP solver to find a subset of the rules 

that is complete and consistent 



ASPAL
Given: 
- Mode declarations M  
- B in the form of a normal program 
- Positive (E+) and negative (E-) examples as a set of facts  
- A penalty function γ 



ASPAL
Given: 
- Mode declarations M  
- B in the form of a normal program 
- Positive (E+) and negative (E-) examples as a set of facts  
- A penalty function γ 
 
Return:  
A normal program hypothesis H such that:  
- H is consistent with M 
- H is complete and consistent 
- The penalty function γ is minimal



ASPAL



ASPAL



ASPAL

A flag which denotes whether this rule has been selected

Builds rules with extra ‘abducible’ literals.



ASPAL
bird(alice).
bird(betty).
can(alice,fly).
can(betty,swim).
ability(fly).
ability(swim).
penguin(X):- bird(X), rule(r1).
penguin(X):- bird(X), not can(X,C1), rule(r2,C1).
penguin(X):- bird(X), not can(X,C1), not can(X,C2), rule(r3,C1,C2).
0 {rule(r1),rule(r2,fly),rule(r2,swim),rule(r3,fly,swim\}4.
goal : - penguin(betty), not penguin(alice).
: - not goal.



ASPAL Guess which rules should be included

bird(alice).
bird(betty).
can(alice,fly).
can(betty,swim).
ability(fly).
ability(swim).
penguin(X):- bird(X), rule(r1).
penguin(X):- bird(X), not can(X,C1), rule(r2,C1).
penguin(X):- bird(X), not can(X,C1), not can(X,C2), rule(r3,C1,C2).
0 {rule(r1),rule(r2,fly),rule(r2,swim),rule(r3,fly,swim\}4.
goal : - penguin(betty), not penguin(alice).
: - not goal.



ASPAL

The role of the ASP solver is to: 

- prove the positive examples 

- disprove the negative examples 

- guess rules when necessary



ASPAL



ASPAL - why does it work?

It combines the search for a solution with example 

coverage.  

By using ASP solvers, it can jump around the search 

space. 

ASP solvers are really good!



ASPAL advantages

Simple 

Recursion 

Optimality 

Efficient for small rules



ASPAL disadvantages

Cannot learn large rules 

Cannot handle large BK



Popper



Popper

1. Generate programs one-at-a-time 



Popper

1. Generate programs one-at-a-time 

2. Test programs on the data and use the outcome to build 

syntactic constraints on the hypothesis space 



Popper

1. Generate programs one-at-a-time 

2. Test programs on the data and use the outcome to build 

syntactic constraints on the hypothesis space 

3. Use the constraints to guide the search



PopperPopper



PopperPopper

Combine Explain

Test

Generate

Constrain



Illustrative example



input output

laura a

penelope e

emma m

james e









input output entailed 

laura a no

penelope e no

emma m no

james e no



input output entailed 

laura a no

penelope e no

emma m no

james e no

H1 is too specific



Prune specialisations



Prune specialisations



Prune specialisations



Prune specialisations





input output entailed 

laura a yes

penelope e yes

emma m yes

james e no



input output entailed 

laura a yes

penelope e yes

emma m yes

james e no

H4 is too general



Prune generalisations



Prune generalisations



Prune generalisations



Prune generalisations





input output entailed 

laura a yes

penelope e yes

emma m no

james e no

H5 does not fail, so return it



1. Generate  (ASP) 

2. Test (Prolog) 

3. Constrain (ASP)

Popper



1. Generate  (ASP) 

2. Test (Prolog) 

3. Explain (Prolog) 

4. Combine (ASP) 

5. Constrain (ASP)

Popper



Decomposes the learning problem

Popper - why does it work?



Never repeats itself

Popper - why does it work?



Reasons about syntax, not semantics

Popper - why does it work?



Uses the right tool for the job

Popper - why does it work?



Optimality 
Recursion  
Infinite BK 
Complex numerical reasoning 
Predicate invention 
Programs with many rules 
Programs with moderately sized rules

Popper advantages



Noisy data 

Cannot learn large rules (20+ literals)

Popper disadvantages



Part 5: Applications



Robot scientist

King et al. Nature, 2004



Robot scientist



Robot scientist

The first machine to discover new scientific knowledge 
independently of its human creators



Drug design

King et al. Proceedings of the National Academy of Sciences, 1992



Drug design

great(A,B):-  
    struc(A,C,D,E),
    struc(B,F,h,h),
    h_donor(C,hdonO),
    polarisable(C,polaril),
    flex(F,G),
    flex(C,H),
    great_flex(G,H),
    great6_flex(G).



Drug design

Drug A is better than drug B if: 
    drug B has no substitutions at positions 4 and 5,  
    and drug B at position 3 has flexibility >6,  
    and drug A at position 3 has polarisability = 1,  
    and drug A at position 3 has hydrogen donor = 0,  
    and drug A at position 3 is less flexible than drug B at position 3.

Ando, Howard Y., et al. "Discovering H-bonding rules in crystals with inductive logic programming." Molecular pharmaceutics 3.6 (2006): 665-674.



bind(A):-
  has_aminoacid(A,B,asp),
  atom_to_atom_dist(B,B,'N','OD2',4.6,0.5),
  has_amino_acid(A,C,leu),
  has_amino_acid(A,D,cys),
  atom_to_center_dist(B,'C',7.6,0.5).

Scientific discovery

Santos et al. BMC Bioinformatics, 2012



task input output

f philip.larkin@sj.ox.ac.uk Philip Larkin

Data curation



task input output

f philip.larkin@sj.ox.ac.uk Philip Larkin

f(A,B):-
  inv1(A,C),skip1(C,D),space(D,E),
  inv1(E,F),skiprest(F,B).
inv1(A,B):- 
  uppercase(A,C),copyword(C,B).

Data curation



~10 seconds

task input output

f philip.larkin@sj.ox.ac.uk Philip Larkin

f(A,B):-
  inv1(A,C),skip1(C,D),space(D,E),
  inv1(E,F),skiprest(F,B).
inv1(A,B):- 
  uppercase(A,C),copyword(C,B).

Data curation



task input output

g tony Tony

Data curation



task input output

g tony Tony

g(A,B):-uppercase(A,C),copyword(C,B).

Data curation



task input output

g tony Tony

f philip.larkin@sj.ox.ac.uk Philip Larkin

g(A,B):-uppercase(A,C),copyword(C,B).

 
 

Data curation



task input output

g tony Tony

f philip.larkin@sj.ox.ac.uk Philip Larkin

g(A,B):-uppercase(A,C),copyword(C,B).

f(A,B):-g(A,C),skip1(C,D),space(D,E),
    g(E,F),skiprest(F,B).

Data curation



task input output

g tony Tony

f philip.larkin@sj.ox.ac.uk Philip Larkin

2 seconds*

g(A,B):-uppercase(A,C),copyword(C,B).

f(A,B):-g(A,C),skip1(C,D),space(D,E),
    g(E,F),skiprest(F,B).

Data curation



Lin et al. ECAI2014

Data curation



Game playing

Silver et al. AAAI, 2020



Part 6: Challenges and 
opportunities



Part 6: Challenges and 
opportunities

Challenges



Usability

“while over 100 ILP systems have been constructed since 1991, 
less than a handful can even begin to be used meaningfully by ILP 
practitioners other than the original developers”



Usability

Many systems are prototypes and are not maintained 

Systems are inconsistent among themselves (w.r.t. language bias) 

Only the developers know how to use the systems properly



Usability

“You often need a PhD in ILP to use any of the tools”



What do we need?

Better engineered tools



What do we need?

Better maintained tools



What do we need?

Standardisation



What do we need?

Standardisation



Language bias

The biggest deterrent from ILP



Language bias

weak bias: too slow to be usable 

strong bias: fast learning but might exclude the target program



Language bias what should we do?

Automatically identify an appropriate language bias

A vastly under-researched area of ILP!



Predicate invention

Predicate invention is central for complex tasks



Predicate invention



Predicate invention



Predicate invention

Challenge: what is a useful predicate to invent?

Recent progress: find reoccurring subprograms from 
                              available solutions to similar problems



Predicate invention

Discover useful and reusable abstractions before and during learning

Dumancic et al, “Knowledge Refactoring for Inductive Program Synthesis”, AAAI 2021



Learning from raw data



Learning from raw data

ILP assumes data to be structured, but plenty of data available in raw formats

Not every problem is representable in symbolic form

connected(A,B):- edge(A,B).
connected(A,B):- edge(A,C),connected(C,B).



Learning from raw data

Some progress in recent years

Dai & Muggleton, “Abductive Knowledge Induction From Raw Data”, 2021

Evans et al, “Making sense of sensory input”, 2021



Learning from raw data

What should we aim for?

Techniques that treat learning to perceive and learning a program 
as integrated components 



Learning with uncertain data

ILP assumes that BK is correct, but real world is often uncertain

Do birds fly?

How about this bird?



Learning with uncertain data

Various probabilistic logics have been developed since ‘90s

0.8 :: weather(sunny). Query: what is the probability that 
 a particular statement is true?

Problog, Markov logic networks, Probabilistic Soft Logic, …

Challenge: probabilistic logic programs are not efficient



Learning with uncertain data

What should we aim for?

Handling uncertainties in BK, especially in lifelong learning



Relevance of BK

BK is treated as a monolithically construct

Only a tiny percentage of BK is relevant for a task

How do we discover a relevant part of BK?



Scalability?

“ILP does not scale to real-world problems”



What does scalability mean?



What does scalability mean?

Many rules? 

Large rules? 

Large numbers of examples? 

Large amounts of BK?



What does scalability mean?

Many rules? 

Large rules? 

Large numbers of examples? 

Large amounts of BK?

Almost all ILP systems 
can learn programs with 
100s of rules



What does scalability mean?

Many rules? 

Large rules? 

Large numbers of examples? 

Large amounts of BK?

Aleph can learn 
programs with rules with 
100s of literals



What does scalability mean?

Many rules? 

Large rules? 

Large numbers of examples? 

Large amounts of BK?

QuickFOIL can learn 
programs from 2+ 
million examples



What does scalability mean?

Many rules? 

Large rules? 

Large numbers of examples? 

Large amounts of BK?
QuickFOIL can learn 
programs from 200 
million background facts



What is not scalable?

Learning programs with long chains of reasoning



Part 6: Challenges and 
opportunities

Grand challenges



Push ILP beyond what is currently possible 

Require some of the outlined challenges to be solved

Challenging problems



Abstraction and Reasoning Corpus

Find the largest object and copy it



Abstraction and Reasoning Corpus

Identify the lines, complete them,  
and paint with the most frequent color



Abstraction and Reasoning Corpus

Connect yellow boxes through purple pixels, 
you are allowed to turn only at the green box



Abstraction and Reasoning Corpus

Mirror over the green line



Abstraction and Reasoning Corpus

“Simple” high-level solutions, but requires to bridge the gap from pixels

Only a few examples of every task

Solutions are programs



Inductive general game playing

Can we learn the rules (semantics) of games from observations?



next_score(P,N):-
    true_score(P,N),
    draws(P).
next_score(P,N):-
    true_score(P,N),
    loses(P).
next_score(P,N2):-
    true_score(P,N1),
    succ(N2,N1),
    wins(P).

draws(P):-
    does(P,A),
    does(Q,A),
    distinct(P,Q).
loses(P):-
    does(P,A1),
    does(Q,A2),
    distinct(P,Q),
    beats(A2,A1).
wins(P):-
    does(P,A1),
    does(Q,A2),
    distinct(P,Q),
    beats(A1,A2).

*draws/1, loses/1, wins/1 are not provided as BK!

Rock, paper, scissors



Why is IGGP interesting?

Many diverse games 

Not hand-crafted by a system designer 

Cannot predefine the perfect language bias 

Need to learn perfect rules!



IGGP is hard

SOTA performance is learning perfect rules for 40% of the games



What is needed for IGGP?

Negation 

Predicate invention 

Very large rules 

Not overfitting

https://github.com/andrewcropper/iggp

https://github.com/andrewcropper/iggp


IGGP is hard

Need to invent the concept of a line and  
reason about it 



Large biological knowledge bases

Vast amounts of biological data

Protein interaction networks 
Gene expressions 
Molecular functional interactions 
…



Large biological knowledge bases

- Many of them are relational 
- Require discovering rules about interactions 
- Need to be explainable 

- Early successes of ILP 



Visual question answering



Visual question answering

- Need to understand an image 
- Turn question into a query 
- Integrate common sense knowledge



Scientific discovery

- Learn with prior knowledge 
- Hypotheses need to be interpretable 
- Test and refine  
- Experiments should verifiable



Part 6: Challenges and 
opportunities

Opportunities



Loads of opportunities

Machine learning

Constraint solving

Knowledge representation

Databases

ILP



Constraint solving community

Recent approaches frame the ILP problem as a constraint problem: 
- ASPAL 
- ATOM 
- ILASP  
- Popper 
- HEXIL 
- Apperception



Constraint solving community

Recent approaches frame the ILP problem as a constraint problem: 
- ASPAL 
- ATOM 
- ILASP  
- Popper 
- HEXIL 
- Apperception

All (except ATOM) use ASP



Constraint solving opportunities

Can we model these problems better? 

Are other solving approaches better (SAT,SMT,CP)?



Database/Datalog community

For many ILP applications, Datalog suffices 

Databases can help scale ILP significantly (QuickFOIL)



Database/Datalog opportunities

Can we use ideas from databases to ILP scale to larger amounts of BK? 

Can we use ILP for query synthesis in Datalog/SQL systems?



Knowledge representation community

ILP solves the knowledge acquisition problem



Knowledge representation community

How can we assemble large (consistent) knowledge bases with ILP? 

Meta-reasoning: can what we know help us to learn new things faster?



Wrap-up



Wrap up

Inductive logic programming: ML + logic

Attractive features: Small data, interpretable, relational

Attractive capabilities: Recursion, optimality, predicate invention

Lots of opportunities for interaction with other communities
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