Inductive logic programming:

an introduction and recent advances

Part I: Introduction

Part I: Introduction

Motivation

Let's play a game

Positive Negative

There is one object of each color

There are two objects in contact with one small and not blue

Let's play a game

Input	Output
inductive	gxkvewfpk
logic	ekiqn
programming	ipkooctiqtr

Add two to each element and reverse

Let's play a game

Positive Negative
hydrogen donor
hydrogen acceptor

There is a hydrogen receptor connected to two zinc sites with single bonds

Let's play a game

$$
\begin{array}{cccc}
0 \bullet 0 & 0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}
$$

Let's use ML on these problems

What do we need?

Learn from small a number of examples

Playing Zendo with ML

Features

Playing Zendo with ML

Features

red blue green
rectangle triangle square circle medium large small
contact_p1 contact_p2
contact_p3 contact_p4
x_pos y_pos
right_of_p1 left_of_p1 ...

Playing Zendo with ML

	red	green	blue	triangle	rectan gle	square	circle	$\begin{gathered} \text { contac } \\ \text { t_p1 } \end{gathered}$	$\begin{gathered} \text { contac } \\ \text { t_p2 } \end{gathered}$	$\begin{gathered} \text { contac } \\ \text { t_p3 } \end{gathered}$	$\begin{gathered} \text { contac } \\ \text { t_p4 } \end{gathered}$	small	mediu m	large
piece1	0	1	0	0	0	1	0	0	1	0	0	1	0	0
piece2	0	0	1	1	0	0	0	1	0	0	0	1	0	0
piece3	1	0	0	0	0	0	1	0	0	0	0	0	1	0
piece4	0	1	0	1	0	0	0	0	0	0	0	0	1	0

Learn explainable solutions

Understanding networks with ML

Features
hacc hdonor
zincsite
singlebond_a1 singlebond_a2
singlebond_a1 doublebond_a1
doublebond_a2 doublebond_a3
distance_a1 distance_a2
distance_a3...

Understanding networks with ML

hacc	hdonor	zincsite	singlebond a1	singlebond a2	singlebond da3	d_a1 d	0

Learn from highly relational data

Breaking the cipher with ML

Features

Input	Output
inductive	gxkvewfpk
logic	ekiqn

input_1_a input_1_b input_1_c
input_2_a input_2_b input_2_c
input_3_a input_3_b input_3_c
programming
ipkooctiqtr

Breaking the cipher with ML

	input_1_	input_1_b	input_1_c	input_1_i	input_1	input_1_k	input_1	input_1_m	input_1_p
inductive	0	0	0	1	0	0	0	0	0
logic	0	0	0	0	0	0	1	0	0
$\begin{gathered} \text { programmin } \\ \mathrm{g} \end{gathered}$	0	0	0	0	0	0	0	0	1
				Input	Out				
				inductive	gxkve				
				logic	eki				
				programming	ipkoo				

Breaking the cipher with ML

Shift by 3

Breaking the cipher with ML

Shift by 3

Learn from small a number of examples
Explainable solutions
Learn from highly relational data

WHITIITOLDOU

IP SOLUES THESE PROBLETS

What is ILP good at?

Learn from small a number of examples

Learn from small a number of examples

Explainable solutions

Learn from small a number of examples
Explainable solutions
Learn from highly relational data

ILP is not a silver bullet

Goal of this tutorial

Developing intuition about ILP and its possibilities

Goal of this tutorial

For technical details, check the accompanying publication

Inductive Logic Programming At 30: A New Introduction

Andrew Cropper
ANDREW.CROPPER@CS.OX.AC.UK
University of Oxford
s.DUMANCIC@TUDELFT.NL
TU Delft

Abstract

Inductive logic programming (ILP) is a form of machine learning. The goal of ILP is to induce a hypothesis (a set of logical rules) that generalises training examples. As ILP turns 30, we provide a new introduction to the field. We introduce the necessary logical notation and the main learning settings; describe the building blocks of an ILP system; compare several systems on several dimensions; describe four systems (Aleph, TILDE, ASPAL, and Metagol); highlight key application areas; and, finally, summarise current limitations and directions for future research.

Outline

1. Logic: What and why?

2. Building an ILP system
3. Features and applications
4. Challenges and opportunities

Please ask questions and interrupt!

Part I: Introduction
What is ILP?

ML + logic

ML

ILP

Program synthesis

Logic refresher

Socrates is a man. All men are mortal.

Socrates is a man. All men are mortal.

Therefore, Socrates is mortal.

Socrates is a man. All men are mortal.

Therefore, Socrates is mortal.
man(socrates).
$\forall \mathbf{A} \operatorname{man}(\mathbf{A}) \rightarrow \operatorname{mortal}(\mathbf{A})$.

Socrates is a man. All men are mortal.

- - - - - - - - - - - - -

Therefore, Socrates is mortal.
$\forall \mathbf{A} \operatorname{man}(\mathbf{A}) \rightarrow$ mortal($\mathbf{A})$.

rule

Socrates is a man. All men are mortal.

Therefore, Socrates is mortal.
man(socrates).
$\forall \mathbf{A} \operatorname{man}(\mathbf{A}) \rightarrow \operatorname{mortal}(\mathbf{A})$.

)
then this side is true
if this side is true

Socrates is a man. All men are mortal.

Therefore, Socrates is mortal.
man(socrates).
$\forall \mathbf{A} \operatorname{man}(\mathbf{A}) \rightarrow \operatorname{mortal}(\mathbf{A})$.
$\forall \mathbf{A} \operatorname{man}(\mathbf{A}) \rightarrow \operatorname{mortal}(\mathbf{A})$.
$\forall \mathbf{A} \operatorname{man}(\mathbf{A}) \rightarrow \operatorname{mortal}(\mathbf{A})$.
\downarrow
$\operatorname{man}(\mathbf{A}) \rightarrow \operatorname{mortal}(\mathbf{A})$.
variables are all
universally quantified
$\forall \mathbf{A} \operatorname{man}(\mathbf{A}) \rightarrow \operatorname{mortal}(\mathbf{A})$.
\downarrow
$\operatorname{man}(\mathbf{A}) \rightarrow \operatorname{mortal}(\mathbf{A})$.
\downarrow
flip the implication arrow direction
$\forall \mathbf{A} \operatorname{man}(\mathbf{A}) \rightarrow \operatorname{mortal}(\mathbf{A})$.
\downarrow
$\operatorname{man}(\mathbf{A}) \rightarrow \operatorname{mortal}(\mathbf{A})$.
\downarrow
$\operatorname{mortal}(\mathbf{A}) \leftarrow \operatorname{man}(\mathbf{A})$.
\downarrow
replace the arrow with :- $\quad \operatorname{mortal}(\mathrm{A}):-\operatorname{man}(\mathrm{A})$.
$\forall \mathbf{A} \operatorname{man}(\mathbf{A}) \rightarrow \operatorname{mortal}(\mathbf{A})$.
\downarrow
$\operatorname{man}(\mathbf{A}) \rightarrow \operatorname{mortal}(\mathbf{A})$.
\downarrow
$\operatorname{mortal}(\mathbf{A}) \leftarrow \operatorname{man}(\mathbf{A})$.
\downarrow
mortal(A):- man(A).
valid Prolog / Datalog / ASP rule
$\forall \mathbf{A} . \forall \mathbf{B}$ knows $(\mathbf{A}, \mathbf{B}) \wedge \operatorname{rich}(\mathbf{B}) \wedge \operatorname{famous}(\mathbf{B}) \rightarrow \operatorname{happy}(\mathbf{A})$.
$\forall \mathbf{A} . \forall \mathbf{B}$ knows $(\mathbf{A}, \mathbf{B}) \wedge \operatorname{rich}(\mathbf{B}) \wedge \operatorname{famous}(\mathbf{B}) \rightarrow \operatorname{happy}(\mathbf{A})$.
\downarrow
$\operatorname{knows}(\mathbf{A}, \mathbf{B}) \wedge \operatorname{rich}(\mathbf{B}) \wedge \operatorname{famous}(\mathbf{B}) \rightarrow \operatorname{happy}(\mathbf{A})$.
$\forall \mathbf{A} . \forall \mathbf{B} \operatorname{knows}(\mathbf{A}, \mathbf{B}) \wedge \operatorname{rich}(\mathbf{B}) \wedge \operatorname{famous}(\mathbf{B}) \rightarrow$ happy (\mathbf{A}).
\downarrow
$\operatorname{knows}(\mathbf{A}, \mathbf{B}) \wedge \operatorname{rich}(\mathbf{B}) \wedge \operatorname{famous}(\mathbf{B}) \rightarrow \operatorname{happy}(\mathbf{A})$.
\Downarrow
$\operatorname{happy}(\mathbf{A}) \leftarrow \operatorname{knows}(\mathbf{A}, \mathbf{B}) \wedge \operatorname{rich}(\mathbf{B}) \wedge$ famous (\mathbf{B}).
$\forall \mathbf{A} . \forall \mathbf{B}$ knows $(\mathbf{A}, \mathbf{B}) \wedge \operatorname{rich}(\mathbf{B}) \wedge \operatorname{famous}(\mathbf{B}) \rightarrow \operatorname{happy}(\mathbf{A})$. \downarrow
knows $(\mathbf{A}, \mathbf{B}) \wedge \operatorname{rich}(\mathbf{B}) \wedge$ famous $(\mathbf{B}) \rightarrow \operatorname{happy}(\mathbf{A})$.
\downarrow
happy $(\mathbf{A}) \leftarrow \operatorname{knows}(\mathbf{A}, \mathbf{B}) \wedge \operatorname{rich}(\mathbf{B}) \wedge$ famous (\mathbf{B}).
\downarrow
happy (A) :- knows (A, B), rich (B), famous(B).

What does this have to do with programming?

Logic programs

empty([]).
head([H]_],H).
tail([_IT],T).

Logic programs

empty([]).
head([HI_],H).
tail([_IT],T).

$$
\begin{aligned}
& \text { [?- head([h, e, l, l, o] } \mathrm{X}) . \\
& \mathrm{X}=\mathrm{h} . \\
& \text { [?- } \operatorname{tail}([h, e, l, 1, o], X) . \\
& X=[e, 1,1, o] .
\end{aligned}
$$

Logic programs

empty ([]).
head([HI_],H).
tail([_IT],T).

Logic programs

empty([]).
head([HI_],H).
tail([_IT],T).

```
[?- tail(X,[c,a,t]).
X = [_9930, c, a, t].
```


Logic programs

length([],0).
length([HIT],N2):-
length(T,N1),
N 2 is $\mathrm{N} 1+1$.

Logic programs

length([],0).
length([HIT],N2):-

> ??- length $([c, a, t], x)$. $X=3$. length($\mathrm{T}, \mathrm{N} 1$),
N 2 is $\mathrm{N} 1+1$.

Logic programs

length([],0).
length([HIT],N2):-

```
?- length(X,4).
X = [_6240, _6246, _6252, _6258].
```

 length(\(\mathrm{T}, \mathrm{N} 1\)),
 N 2 is \(\mathrm{N} 1+1\).

Any questions?

Why logic programs?

Relational
Declarative
Interpretable
Universal

Relational data

edge(oxford_circus, bond_street). edge(oxford_circus, piccadilly_circus). edge(south_kensington, gloucester_road).

connected(S1,S2):- edge(S1,S2). connected(S1,S2):- edge(S1,S3), connected(S3,S2).

Declarative

Say what you what to happen, not how it should happen

zendo(A):- piece(A,C),contact(C,B),size(B,E), small(E),color(B,D),not_blue(D).

Can execute/evaluate the rule in any order. If any literal fails, the whole rule fails.

zendo(A):- piece(A,C),contact(C,B),size(B,E), small(E),color(B,D),not_blue(D).
 zendo(A):- piece(A,C),contact(C,B),size(B,E), small(E),color(B,D),not_red(D).

If any rule succeeds, the whole program succeeds.

Interpretable

> zendo(A):- piece(A,C),contact(C,B),size(B,E), small(E),color(B,D), not_blue(D).
> zendo(A):- piece(A,C),contact(C,B),size(B,E), small(E),color(B,D), not_red(D).

You can understand this program without having to take a course in logic programming!

Universal

Universal

Universal

Universal

Why not logic programs?

Less control

Few people use them

Iffy software

Questions?

Break time

Part I: Introduction
What is ILP?

Zendo in DT

Zendo in DT

Zendo in DT

Zendo in DT

Zendo in DT

yes

Zendo in DT

Zendo in DT

Zendo in DT

Zendo in DT

yes

Zendo in DT

Zendo in DT

Zendo in DT

positive

Zendo in DT

Zendo in DT

positive

Zendo in DT

Zendo in DT

Zendo in DT

Zendo in DT

Zendo in DT

Zendo in DT

Zendo in DT

Zendo in DT

Zendo in DT

Zendo in DT

Zendo in DT

Zendo in DT

Zendo in DT

Zendo in DT

Zendo in DT

Zendo in DT

Zendo in DT

Zendo in DT

Zendo in DT

Zendo in ILP

Zendo in ILP

\% positive example pos(zendo(structure1)).
\% background knowledge piece(structure1, p1). piece(structure1, p2). green(p1). blue(p2). small(p1). small(p2). contact(p1,p2). x_pos(p1,1). x_pos(p2,1).

Zendo in ILP

Zendo in ILP

Encryption in DT

logic

Encryption in ILP

Encryption in ILP

\% positive examples
$\operatorname{pos}(f([i, n, d, u, c, t, i, v, e],[g, x, k, v, e, w, f, p, k]))$. $\operatorname{pos}(f([l, o, g, i, c],[e, k, i, q, n]))$.
$\operatorname{pos}(f([p, r, o, g, r, a, m, m, i, n, g],[i, p, k, o, o, c, t, i, q, t, r]))$.
\% background knowledge head([HI_], H). tail([_IT], T).
empty([]).
$\operatorname{succ}(A, B):-B$ is $A+1$.
ord(a,97).
ord(b,98).
inttochar(97,a). inttochar(98,b).

Encryption in ILP

Input	Output
inductive	gxkvewfpk
logic	ekiqn
programming	ipkooctiqtr

Networks in DT

Networks in DT

Networks in DT

yes

Networks in DT
yes
yes

Networks in DT

yes

Networks in DT

yes
a1_hacc
no

yes

Networks in DT

Networks in DT

yes
yes

Networks in DT

yes
yes

Networks in DT

yes
yes

Networks in DT

yes

```
    yes
```

Networks in DT

yes

```
yes
```

Networks in DT

yes

```
yes
```

Networks in DT

yes
yes

Networks in DT

yes

```
yes
```

Networks in DT

yes

Networks in DT

yes

Networks in DT

yes

Networks in DT

Networks in DT

yes

Networks in DT

Networks in DT

yes

Networks in DT

yes

Networks in DT

Networks in DT

Networks in DT

yes

Networks in DT

Networks in DT

yes

Networks in DT

Networks in DT

yes

Networks in DT

Networks in DT

Networks in DT

Networks in DT

positive

Networks in DT

Networks in DT

Networks in DT

positive

Networks in DT

Networks in ILP

Networks in ILP

\% positive example pharma(molecule1).
\% negative example pharma(molecule2).
\% background knowledge zincsite(a1). hdonor(a2). hacc(a3). bond(a1,a2,single). bond(a4,a5, double). distance(a1,a2,1.57). distance(a2,a3,1.26).

Networks in ILP

Networks in ILP

```
pharma(A):-
    zincsite(A,B),
    hacc(A,C),
    dist(A,B,C,D),
    leq(D,3.58),
    geq(D,1.78),
    hacc(A,E),
    hacc(A,F),
    bond(A,E,F,single).
pharma(A):-
    hacc(A,B),
    hacc(A,C),
    bond(A,B,C,double),
    dist(A,B,C,D),
    leq(D,2.78).
```


Recap

ILP can:

- Generalise from small amount of data
- Learns hypotheses that are understandable
- Learn from relational data

Part 2: Building an ILP system

Part 2: Building an ILP system How does ILP work?

We have told you that ILP is machine learning with logic.

Recap: Decision tree learning

Should I play tennis today?

Day	Weather	Temperature	Humidity	Wind	Play?
1	Sunny	80	High	Weak	No
2	Cloudy	66	High	Weak	Yes
3	Sunny	43	Normal	Strong	Yes
4	Cloudy	82	High	Strong	Yes
5	Rainy	65	High	Strong	No
6	Rainy	42	Normal	Strong	No
7	Rainy	70	High	Weak	Yes
8	Sunny	81	High	Strong	No
9	Cloudy	69	Normal	Weak	Yes
10	Rainy	67	High	Strong	No

Recap: Decision tree learning

Step one: what is the goal?
Separate positive examples from negative ones

How do we achieve that?
Reducing information gain

Recap: Decision tree learning

Step two: how do we represent data?
Tabular data

Day	Weather	Temperature	Humidity	Wind	Play?
1	Sunny	80	High	Weak	No
2	Cloudy	66	High	Weak	Yes
3	Sunny	43	Normal	Strong	Yes
4	Cloudy	82	High	Strong	Yes
5	Rainy	65	High	Strong	No
6	Rainy	42	Normal	Strong	No
7	Rainy	70	High	Weak	Yes
8	Sunny	81	High	Strong	No
9	Cloudy	69	Normal	Weak	Yes
10	Rainy	67	High	Strong	No

Recap: Decision tree learning

Step three: how do the models look like?
Every node is a feature test,
Recursively structured trees
e.g., "is weather sunny?"

Tests split the data in subsets that (don't) satisfy the test

Recap: Decision tree learning

Step four: What is the hypothesis space?

The set of all tree up to a certain depth

Recap: Decision tree learning

Step five: How do we search the hypothesis space?
From simpler to more complicated, step by step

Recap: Decision tree learning

Step five: How do we search the hypothesis space?
From simpler to more complicated, step by step

Recap: Decision tree learning

Step five: How do we search the hypothesis space?
From simpler to more complicated, step by step

What is the best first feature to split on? Select and commit!

Recap: Decision tree learning

Step five: How do we search the hypothesis space?
From simpler to more complicated, step by step

What is the best feature to take next,
for points that satisfy the previous criteria?

Recap: Decision tree learning

Step five: How do we search the hypothesis space?
From simpler to more complicated, step by step

What is the best feature to take next, for points that satisfy the previous criteria?

Select and commit!

Recap: Decision tree learning

Step five: How do we search the hypothesis space?
From simpler to more complicated, step by step

What is the best feature to take next, for points that did not satisfy the previous criteria?

Recap: Decision tree learning

Step one: what is the goal?
Step two: how do we represent data?
Step three: how do the models look like?
Step four: What is the hypothesis space?
Step five: How do we search the hypothesis space?

From decision trees to ILP

Step one: what is the goal?

From decision trees to ILP

Step one: what is the goal?
Still the same, splitting positive from negative examples

From decision trees to ILP

Step one: what is the goal?
Step two: how do we represent data?

From decision trees to ILP

Step one: what is the goal?
Step two: how do we represent data?

> As logic programs (facts)

Day	Weather	Temperature	Humidity	Wind	Play?
1	Sunny	80	High	Weak	No
2	Cloudy	66	High	Weak	Yes
3	Sunny	43	Normal	Strong	Yes
4	Cloudy	82	High	Strong	Yes

weather(day1, sunny). temperature(day1, 80). humidity(day1, high) wind(day1, weak).

From decision trees to ILP

Step one: what is the goal?
Step two: how do we represent data?
Step three: how do the models look like?

From decision trees to ILP

Step one: what is the goal?
Step two: how do we represent data?
Step three: how do the models look like?

As logic programs

play(Day, yes) \leftarrow weather(Day, sunny), wind(Day, weak)

From decision trees to ILP

Step one: what is the goal?
Step two: how do we represent data?
Step three: how do the models look like?
Step four: What is the hypothesis space?

From decision trees to ILP

Step one: what is the goal?
Step two: how do we represent data?
Step three: how do the models look like?
Step four: What is the hypothesis space?

From decision trees to ILP

Step one: what is the goal?
Step two: how do we represent data?
Step three: how do the models look like?
Step four: What is the hypothesis space?
Step five: How do we search the hypothesis space?

From decision trees to ILP

Step one: what is the goal?
Step two: how do we represent data?
Step three: how do the models look like?
Step four: What is the hypothesis space?
Step five: How do we search the hypothesis space?

Examples

last ([m, a, c, h,i,n,e], e). last([l,e,a, r,n,i,n,g], g). last ([a,l, g,o, r,i,t,m], m).

Background knowledge

empty (A) A is an empty list head $(A, B) \quad B$ is the head of the list A $\operatorname{tail}(A, B) \quad B$ is the tail of the list A

Program

last(A,B):- tail(A,C), empty (C), head (A, B).
last(A,B):- tail(A,C), last(C,B).

Why do we want to represent everything in logic?

Part 2: Building an ILP system How does ILP work?
Representation language

Which logic programming language?

Propositional logic

	red	green	blue	triangle	rectangle	square	circle	contact_p1	contact_p2	contact_p3	contact_p4	small	medium	large
piece1	0	1	0	0	0	1	0	0	1	0	0	1	0	0
piece2	0	0	1	1	0	0	0	1	0	0	0	1	0	0
piece3	1	0	0	0	0	0	1	0	0	0	0	0	1	0
piece4	0	1	0	1	0	0	0	0	0	0	0	0	1	0

piece1_green.
piece2_blue.
piece2_triangle.
piece1_contact_p2.
piece4_triangle.

Propositional logic

Limited expressivity (same as DT learners)
Difficult to model problems (not relational)
No recursion

Full first-order logic

Intractable

$\forall A . \exists B . \forall C \operatorname{right}(A, B) \wedge \operatorname{right}(B, C) \wedge \operatorname{blue}(A) \wedge \operatorname{red}(B) \rightarrow \operatorname{contact}(A, B) \vee \neg \operatorname{square}(B)$.

Horn logic

The foundation of most automated reasoning used in SAT etc
zendo $(A) \leftarrow$ piece (A, B), blue (B).
blue(p1).

Horn logic

Important for resolution because:

- the resolvent of two Horn clauses is itself a Horn clause
- the resolvent of a goal clause and a definite clause is a goal clause

Prolog

Search uses SLD-resolution (backwards chaining)

Prolog advantages

Turing complete

Lists and complex data structures

Complex numerical reasoning

Prolog disadvantages

Not guaranteed to terminate

Datalog

Definite programs without functional symbols and minor syntactic restrictions

Datalog advantages

Guaranteed to terminate

Sufficient for most problems in this tutorial

Has nice properties, such as a unique minimal model

Datalog disadvantages

Not Turing complete (no functional symbols)

Database vs program

If it uses logical function symbols, it is considered a program.
If it does not, it is considered a database.

Monotonicity

A logic is monotonic when adding knowledge to it does not reduce the logical consequences of that theory.

Monotonicity

A logic is non-monotonic if some conclusions can be removed/ invalidated by adding more knowledge.

Monotonic logic

\%\% program
sunny.
happy:- sunny.
\%\% consequences
sunny.
happy.

Monotonic logic

\%\% program
sunny.
happy:- sunny.
\%\% consequences
sunny.
happy.
\%\% program
sunny.
happy:- sunny.
happy:- rich.
\%\% consequences
sunny.
happy.

Non-monotonic programs

Most use negation-as-failure (NAF) (Clark, 1977).

An atom is false if it cannot be proven true.

Non-monotonic logic

\%\% program
sunny.
happy:- sunny, not weekday.
\% \% consequences
sunny.
happy.

Non-monotonic logic

\%\% program
sunny.
happy:- sunny, not weekday.
\%\% consequences
sunny.
happy.
\%\% program
sunny.
happy:- sunny, not weekday. weekday.
\%\% consequences
sunny.
weekday.

Non-monotonic logic

+ more compact representations
- more difficult to learn, especially recursive programs

Answer set programming

Language extensions over Datalog, such as choice rules and constraints

Answer set programming

Language extensions over Datalog, such as choice rules and constraints

A high-level modelling language for SAT/MaxSAT

Break time

Part 2: Building an ILP system How does ILP work?
Search direction

ILP is search

How do we search the hypothesis space?

Subsumption

$$
\begin{aligned}
& C_{1}=f(A, B):-\operatorname{head}(A, B) \\
& C_{2}=f(X, Y):-\operatorname{head}(X, Y), \operatorname{odd}(Y) .
\end{aligned}
$$

Subsumption

$$
\begin{aligned}
& C_{1}=f(A, B):-\operatorname{head}(A, B) \\
& C_{2}=f(X, Y):-\operatorname{head}(X, Y), \operatorname{odd}(Y) .
\end{aligned}
$$

Then C_{1} subsumes C_{2} because

$$
\{f(A, B), \neg \operatorname{head}(A, B)\} \theta \subseteq\{f(X, Y), \neg \operatorname{head}(X, Y), \neg \operatorname{odd}(Y)\}
$$

with $\theta=\{A / X, Y / B\}$.

Specialisations

If we add a literal to a rule, it can only become more specific and entail fewer examples

Specialisations

happy(A):-
lego_builder(A).
subsumes
happy(A):-
lego_builder(A), enjoys_lego(A)

Generalisations

If we add a rule to a program, it can only become more general and entail more examples

Generalisations

happy(A):- lego_builder(A), enjoys_lego(A).
happy(A):- lego_builder(A), knows(A,B), enjoys_lego(B).

subsumes

happy(A):- lego_builder(A), enjoys_lego(A)

Subsumption lattice

Top-down

Start with a general hypothesis and iteratively specialise it

Top-down

Use example coverage to guide the search, such as through hill climbing and A*

Top-down

1. Find a good rule that covers some of the positive examples and add it to the program
2. Repeat but focus on `uncovered` examples

Top-down advantages

Recursion

Top-down disadvantages

Inefficient

Constants

Bottom-up

Start with a specific hypothesis and iteratively generalise it

CIGOL, GOLEM, XHAIL, Progol*, Aleph*

Bottom-up

Bottom-up

Use example coverage to guide the search, such as through hill climbing and A*

Bottom-up advantages

Fast

Constants

Bottom-up disadvantages

Optimality (overfitting)

Recursion

Top-down and bottom-up

Bottom-up:

1. Find the most specific rule \mathbf{R} for each example

Top-down
2. Search the generalisations of \mathbf{R} in a top-down way

Top-down and bottom-up

Search is bound from below by step 1 .
Solutions generalise well because of Step 2.

Top-down and bottom-up advantages

Efficiency

Large rules
Many rules

Top-down and bottom-up disadvantages

Overfitting

Recursion

Predicate invention

Meta-level

Search all over

Meta-level

Meta-level

Meta-level

Use a dedicated solver (SAT/SMT/ASP) to perform to search

Meta-level advantages

Recursion

Completeness

Optimality

Meta-level disadvantages

Small domains

Small rules

Part 2: Building an ILP system How does ILP work?
Language bias

How to define the hypothesis space?

The hypothesis is the space of all possible hypotheses that can be built. An inductive bias is essential to restrict the hypothesis space.

Mode declarations

Specify which symbols may appear in rules (and their types and directions)

Mode declarations

Specify which symbols may appear in rules (and their types and directions)

```
modeh(*,target(+list,-char)).
modeb(*,member(+list,-char)).
modeb(*,tail(+list,-list)).
modeb(*,empty(+list)).
```


Mode declarations

Specify which symbols may appear in rules (and their types and directions)

```
modeh(*,target(+list,-char)).
modeb(*,member(+list,-char)).
modeb(*,tail(+list,-list)).
modeb(*,empty(+list)).
target(A,B):- member(A,B).
```


Mode declarations

Specify which symbols may appear in rules (and their types and directions)

```
modeh(*,target(+list,-char)).
modeb(*,member(+list,-char)).
modeb(*,tail(+list,-list)).
modeb(*,empty(+list)).
```

$\operatorname{target}(\mathrm{A}, \mathrm{B}):-$ member($\mathrm{A}, \mathrm{B})$.
$\operatorname{target}(A, B):-\operatorname{tail}(A, C)$, member($C, B)$.

Mode declarations

Specify which symbols may appear in rules (and their types and directions)

$$
\begin{aligned}
& \text { modeh(*,target(+list,-char)). } \\
& \text { modeb(}{ }^{*}, \text { member(+list,,-char)). } \\
& \text { modeb(}{ }^{*} \text { tail(+list,-list)). } \\
& \text { modeb(*,empty(+list)). }
\end{aligned}
$$

```
target(A,B):- member(A,B).
target(A,B):- tail(A,C), member(C,B).
```

target(A,B):- tail(A,C), tail(C,B).

Part 3: features

Recursion

Recursion

connected $(A, B):-\operatorname{edge}(A, B)$.

Recursion

connected (A, B) :- edge(A, B).
connected(A,B):- edge(A,C),edge(C,B).

Recursion

```
connected(A,B):- edge(A,B).
connected(A,B):- edge(A,C),edge(C,B).
connected(A,B):- edge(A,C),edge(C,D),edge(D,B).
```


Recursion

```
connected(A,B):- edge(A,B).
connected(A,B):- edge(A,C),edge(C,B).
connected(A,B):- edge(A,C),edge(C,D),edge(D,B).
connected(A,B):- edge(A,C),edge(C,D),edge(D,E),edge(E,B).
```


Recursion

```
connected(A,B):- edge(A,B).
connected(A,B):- edge(A,C),edge(C,B).
connected(A,B):- edge(A,C),edge(C,D),edge(D,B).
connected(A,B):- edge(A,C),edge(C,D),edge(D,E),edge(E,B).
```

- Cannot generalise to arbitrary depth
- Difficult to learn because of its size

Recursion

connected (A, B) :- edge(A,B).

Recursion

```
connected(A,B):- edge(A,B). connected(A,B):- edge(A,C),connected(C,B).
```


Recursion

> connected(A,B):- edge(A,B). connected(A,B):- edge(A,C),connected(C,B).

- Easier to learn because of its size
- Need fewer examples

Predicate invention

Automatically invent new symbols

Predicate invention

greatgrandparent(A,B):- mother(A,C),mother(C,D),mother(D,B).

Predicate invention

greatgrandparent(A,B):- mother(A,C),mother(C,D), mother(D,B). greatgrandparent(A,B):- mother(A,C),mother(C,D),father(D,B).

Predicate invention

greatgrandparent(A,B):- mother(A,C), mother(C,D), mother(D,B). greatgrandparent (A, B) :- mother(A,C), mother (C,D),father(D,B). greatgrandparent (A, B) :- mother (A, C),father (C, D), mother (D, B).

Predicate invention

greatgrandparent(A,B):- mother(A,C), mother(C,D), mother(D,B). greatgrandparent(A,B):- mother(A,C),mother(C,D),father(D,B). greatgrandparent (A, B) :- mother (A, C),father (C, D), mother (D, B). greatgrandparent(A,B):- mother(A,C),father(C,D),father(D,B).

Predicate invention

greatgrandparent(A,B):- mother(A,C),mother(C,D), mother(D,B). greatgrandparent (A, B) :- mother(A,C), mother (C,D),father(D,B). greatgrandparent (A, B) :- mother (A, C),father (C, D), mother (D, B). greatgrandparent(A,B):- mother(A,C),father(C,D),father(D,B). greatgrandparent $(A, B):-$ father (A, C),father (C,D),father(D,B). greatgrandparent(A,B):- father(A,C),father(C,D), mother(D,B). greatgrandparent(A,B):- father(A,C), mother(C,D),father(D,B). greatgrandparent(A,B):- father(A,C),mother(C,D),mother(D,B).

Predicate invention

greatgrandparent(A,B):- mother(A,C),mother(C,D), mother(D,B). greatgrandparent $(A, B):-$ mother(A,C), mother (C,D), father(D,B). greatgrandparent (A, B) :- mother (A, C),father (C, D), mother (D, B). greatgrandparent(A,B):- mother(A,C),father(C,D),father(D,B). greatgrandparent $(A, B):-$ father (A, C),father (C, D),father (D, B). greatgrandparent(A,B):- father(A,C),father(C,D), mother(D,B). greatgrandparent(A,B):- father(A,C), mother(C,D),father(D,B). greatgrandparent(A,B):- father(A,C),mother(C,D),mother(D,B).

- Difficult to learn because of its size
- Need many examples

Predicate invention

greatgrandparent(A,B):- $\operatorname{inv}(A, C), \operatorname{inv}(C, D), \operatorname{inv}(D, B)$. $\operatorname{inv}(A, B):-$ mother (A, B).
$\operatorname{inv}(A, B):-$ father (A, B).

Predicate invention

greatgrandparent(A,B):- inv(A,C),inv(C,D),inv(D,B). $\operatorname{inv}(A, B)$:- mother (A, B).
$\operatorname{inv}(A, B):-$ father (A, B).

- Easier to learn because of its size
- Need fewer examples

Predicate invention + recursion

The combination is essential to learn many complex problems

Irene Stahl: The Appropriateness of Predicate Invention as Bias Shift Operation in ILP. Mach. Learn. 20(1-2): 95-117 (1995).

Predicate invention + recursion

Find the maximum value of a list and add it to every element

Predicate invention + recursion

f(A,B):- inv1(A,Max),
inv1(A,B):- head(A,B), empty (B).
inv1 $(A, B):-\operatorname{head}(A, B), \operatorname{inv1}(A, C), B>C$.
inv1 $(A, B):-\operatorname{head}(A, C), \operatorname{inv1}(A, B), B=<D$.

Predicate invention + recursion

f(A,B):- inv1(A,Max), inv2(A,Max,B). inv1 (A, B) :- head (A, B), empty (B). inv1 (A, B) :- head($A, B)$, inv1 $(A, C), B>C$. inv1 $(A, B):-$ head $(A, C), \operatorname{inv1}(A, B), B=<D$. inv2(A,Max,B):- empty(A), empty(B). inv2(A,Max,B):- prepend(H1,T1,A), add(Max, $\mathrm{H} 1, \mathrm{H} 2)$, inv2(T1,Max,T2), prepend(H2,T2,B).

Negation

$$
B=\left\{\begin{array}{l}
\text { bird(A):- penguin(A) } \\
\text { bird(alvin) } \\
\text { bird(betty) } \\
\text { bird(charlie) } \\
\text { penguin(doris) }
\end{array}\right\} E^{+}=\left\{\begin{array}{l}
\text { flies(alvin) } \\
\text { flies(betty) } \\
\text { flies(charlie) }
\end{array}\right\} E^{-}=\{\text {flies(doris) }\}
$$

Negation

$$
\begin{gathered}
B=\left\{\begin{array}{l}
\text { bird(A):- penguin(A) } \\
\text { bird(alvin) } \\
\text { bird(betty) } \\
\text { bird(charlie) } \\
\text { penguin(doris) }
\end{array}\right\} E^{+}=\left\{\begin{array}{l}
\text { flies(alvin) } \\
\text { flies(betty) } \\
\text { flies(charlie) }
\end{array}\right\} E^{-}=\{\text {flies(doris) }\} \\
H=\{\text { flies(A):- bird(A), not penguin(A) }\}
\end{gathered}
$$

Predicate invention + negation

Predicate invention + negation

"there are two red cones"

Predicate invention + negation

$f(S):-\quad$ cone(S,A),red(A),cone(S,B),red(B),all_diff(A,B).

Predicate invention + negation

Predicate invention + negation

"there are exactly two cones and both are red" or
"there are exactly three cones and all three are red"

Predicate invention + negation

very messy program here

Predicate invention + negation

$f(S):-$ not inv1(S).
inv1(S):- cone(S,P), not red(P).

Predicate invention + negation

$f(S):-$ not inv1(S).
inv1(S):- cone(S,P), not red(P).
there is a cone that is not red

Predicate invention + negation

Predicate invention + negation

$f(S):-$ not inv1(S).
inv1(S):- cone(S,P), not red(P).
all the cones are red

Higher-order invention

Input	Output
[alice,bob,charlie]	[alic,bo,charli]
[inductive,logic,programming]	[inductiv,logi,programmin]
[ferrara,orleans,london,kyoto]	[ferrar,orlean,londo,kyot]

Higher-order invention

f(A,B):-map(A,B,inv1).

inv1(A,B):-inv2(A,C),tail(C,D),inv2(D,B).
inv2(A,B):-reduceback(A,B,concat).

Higher-order invention

f(A,B):-map(A,B,inv1).

inv1(A,B):-inv2(A,C),tail(C,D),inv2(D,B).
inv2(A,B):-reduceback(A,B,concat).
invents reverse

Higher-order invention

invents droplast
$f(A, B):-m a p(A, B, i n v 1)$.
inv1 (A,B):-inv2(A,C),tail(C,D),inv2(D,B).
inv2(A,B):-reduceback(A,B,concat).
invents reverse

Higher-order invention

Higher-order invention

Input	Output
[alice,bob,charlie]	[alic,bo]
[inductive,logic,programming]	[inductiv,logi]
[ferrara,orleans,london,kyoto]	[ferrar,orlean,londo]

Higher-order invention

$f(A, B):-m a p(A, C, i n v 1), \operatorname{inv1}(C, B)$.
inv1 (A,B):-inv2(A,C),tail(C,D),inv2(D,B).
inv2(A,B):-reduceback(A,B,concat).

Higher-order invention

Optimality: textual complexity

$$
\begin{aligned}
& f(A):-\operatorname{element}(A, 1) . \\
& f(A):-\operatorname{element}(A, 2) . \\
& f(A):-\operatorname{element}(A, 3) . \\
& f(A):-\operatorname{element}(A, 4) . \\
& f(A):-\operatorname{element}(A, 5) . \\
& f(A):-\operatorname{element}(A, 6) . \\
& f(A):-\operatorname{element}(A, 7) . \\
& f(A):-\operatorname{element}(A, 8) . \\
& f(A):-\operatorname{element}(A, 9) . \\
& f(A):-\operatorname{element}(A, 10) .
\end{aligned}
$$

Optimality: textual complexity

$f(A):-$ element(A, 101), element(A,102).

Optimality: efficiency

input	output
sheep	e
alaca	a
chicken	$?$

Optimality: efficiency

input	output
sheep	e
alaca	a
chicken	c

Optimality: efficiency

$f(A, B):-$ head(A,B),tail(A,C),element(C,B).
$f(A, B):-$ tail(A,C),f(C,B).

Optimality: efficiency

$f(A, B)$:- head(A,B),tail(A,C),element(C,B).
$f(A, B):-\operatorname{tail}(A, C), f(C, B)$.
$\mathrm{O}\left(\mathrm{n}^{\wedge}\right)$

Optimality: efficiency

$f(A, B):-$ mergesort(A,C),inv1(C,B). inv1(A,B):- head(A,B),tail(A,C),head(C,B). inv1(A,B):- tail(A,C),inv1(C,B).

Optimality: efficiency

$f(A, B):-$ mergesort(A,C),inv1(C,B). inv1(A,B):- head(A,B),tail(A,C),head(C,B). inv1 $(A, B):-\operatorname{tail}(A, C), \operatorname{inv} 1(C, B)$.
$\mathrm{O}(\mathrm{n} \log \mathrm{n})$

Optimality: efficiency

$f(A, B):-$ mergesort(A,C),inv1(C,B).
inv1(A,B):- head(A,B),tail(A,C),head(C,B).
inv1(A,B):- tail(A,C),inv1(C,B).

Predicate invention and recursion!

Noise

- noisy examples
- noisy BK

Noisy examples

Almost all ILP systems handle noisy examples!

Noisy examples

Sequential covering or divide-and-conquer

- Aleph, Progol, FOIL, TILDE, ATOM, QuickFOIL

Noisy examples

Solver optimisation

- ILASP, Popper

Noisy BK

Almost no ILP systems handle noisy BK!

Numerical data

Numerical data

zendo(A):- piece(A,B),contact(B,C),size(C,D),geq(D,7).

Numerical data

equilibrium(A):- mass(A,B),forces(A,C),sum(C,D),mult(B,9.807,D).

Numerical data

pharma $(A):-\operatorname{zinc}(A, B), \operatorname{hacc}(A, C), \operatorname{dist}(A, B, C, D)$, leq(D,4.18), geq(D,2.22). pharma (A) :- $\operatorname{hacc}(A, C)$, hacc (A, E), $\operatorname{dist}(A, B, C, D)$, geq($D, 1.23)$, leq($D, 3.41$). pharma (A) :- zinc $(A, C), \operatorname{zinc}(A, B)$, bond(B,C,du), $\operatorname{dist}(A, B, C, D)$, leq(D,1.23).

Break time

Part 4: ILP systems

TILDE

Divide-and-conquer strategy: recursively split the data using a conjunction with the highest information gain

TILDE

Given:

- Classes C
- Mode declarations M
- Positive (E+) and negative (E-) examples as interpretations
- BK in the form of a definite program

TILDE

Given:

- Classes C
- Mode declarations M
- Positive (E+) and negative (E-) examples as interpretations
- BK in the form of a definite program

Return:

A normal program hypothesis H such that:

- H is consistent with M
- H is complete and consistent

TILDE

class(X, sendback) :- worn(X), irreplaceable(X), !. class(X,fix) :- worn(X), !. class(X,ok).

TILDE

Advantages:

- Can learn normal logic programs
- Supports both categorical and numerical data

Disadvantages:

- Does not support recursion
- Need for lookahead

ASPAL

1. Generate all possible rules
2. Generate all possible rules
3. Use an ASP solver to find a subset of the rules that is complete and consistent

Given:

- Mode declarations M
- B in the form of a normal program
- Positive (E+) and negative (E-) examples as a set of facts
- A penalty function Y

ASPAL

Given:

- Mode declarations M
- B in the form of a normal program
- Positive (E+) and negative (E-) examples as a set of facts
- A penalty function Y

Return:

A normal program hypothesis H such that:

- H is consistent with M
- H is complete and consistent
- The penalty function γ is minimal

ASPAL

$$
\mathrm{B}=\left\{\begin{array}{l}
\text { bird(alice). } \\
\text { bird(betty). } \\
\text { can(alice,fly). } \\
\text { can(betty, swim). } \\
\text { ability(fly). } \\
\text { ability(swim). }
\end{array}\right\}
$$

$$
E^{+}=\{\text {penguin(betty). }\} E^{-}=\{\text {penguin(alice) } .\}
$$

$$
M=\left\{\begin{array}{l}
\operatorname{modeh}(1, \text { penguin }(+ \text { bird })) . \\
\operatorname{modeb}(1, \text { bird }(+ \text { bird }) . \\
\operatorname{modeb}(*, \text { not can }(+ \text { bird }, \# \text { ability }))
\end{array}\right\}
$$

ASPAL

```
penguin(X):- bird(X).
penguin(X):- bird(X), not can(X,fly).
penguin(X):- bird(X), not can(X,swim).
penguin(X):- bird(X), not can(X,swim), not can(X,fly).
```

```
penguin(X):- bird(X), rule(r1).
penguin(X):- bird(X), not can(X,C1), rule(r2,C1).
penguin(X):- bird(X), not can(X,C1), not can(X,C2), rule(r3,C1,C2).
```


A flag which denotes whether this rule has been selected

ASPAL

bird(alice).
bird(betty).
can(alice,fly).
can(betty,swim).
ability(fly).
ability(swim).
penguin (X) :- $\operatorname{bird}(X)$, rule(r1).
penguin (X) :- $\operatorname{bird}(X)$, not can $(X, C 1)$, rule($r 2, C 1$).
penguin (X) :- $\operatorname{bird}(X)$, not can $(X, C 1)$, not can($X, C 2)$, rule($\mathrm{r} 3, C 1, C 2$).
0 \{rule(r1), rule(r2,fly), rule(r2,swim), rule(r3,fly,swiml\}4. goal : - penguin(betty), not penguin(alice).
: - not goal.

Guess which rules should be included

bird(alice).
bird(betty).
can(alice,fly).
can(betty,swim).
ability(fly).
ability(swim).
penguin (X) :- $\operatorname{bird}(X)$, rule(r1).
penguin (X) :- $\operatorname{bird}(X)$, not can $(X, C 1)$, rule(r2,C1).
penguin (X) :- $\operatorname{bird}(X)$, not can $(X, C 1)$, not can $(X, C 2)$, rule(r3,C1, C2). \downarrow
0 \{rule(r1), rule(r2,fly), rule(r2,swim), rule(r3,fly,swiml\}4. goal : - penguin(betty), not penguin(alice).
: - not goal.

The role of the ASP solver is to:

- prove the positive examples
- disprove the negative examples
- guess rules when necessary

ASPAL

> rule(r2,c(fly)).
penguin(A):- not can(A,fly).

ASPAL - why does it work?

It combines the search for a solution with example coverage.

By using ASP solvers, it can jump around the search space.

ASP solvers are really good!

ASPAL advantages

Simple
Recursion
Optimality

Efficient for small rules

ASPAL disadvantages

Cannot learn large rules
Cannot handle large BK

Popper

Friday, February 10
JT3: Machine Learning ${ }^{1}$
9:30-10:45

Popper

1. Generate programs one-at-a-time

Popper

1. Generate programs one-at-a-time
2. Test programs on the data and use the outcome to build syntactic constraints on the hypothesis space

Popper

1. Generate programs one-at-a-time
2. Test programs on the data and use the outcome to build syntactic constraints on the hypothesis space
3. Use the constraints to guide the search

Popper

Popper

Illustrative example

input	output
laura	a
penelope	e
emma	m
james	e

$$
\begin{aligned}
E^{+} & =\left\{\begin{array}{l}
\operatorname{last}([l, a, u, r, a], a) . \\
\operatorname{last}([p, e, n, e, l, o, p, e], e) .
\end{array}\right\} \\
E^{-} & =\left\{\begin{array}{l}
\operatorname{last}([e, m, m, a], m) . \\
\operatorname{last}([j, a, m, e, s], e) .
\end{array}\right\}
\end{aligned}
$$

$$
\mathscr{H}_{1}=\left\{\begin{array}{l}
\mathrm{h}_{1}=\{\operatorname{last}(A, B):-\operatorname{head}(A, B) \cdot\} \\
\mathrm{h}_{2}=\{\operatorname{last}(A, B):-\operatorname{head}(A, B), \text { empty }(A) \cdot\} \\
\mathrm{h}_{3}=\{\operatorname{last}(A, B):-\operatorname{head}(A, B), \operatorname{reverse}(A, C), \operatorname{head}(C, B) \cdot\} \\
\mathrm{h}_{4}=\{\operatorname{last}(A, B):-\operatorname{tail}(A, C), \operatorname{head}(C, B) \cdot\} \\
\mathrm{h}_{5}=\{\operatorname{last}(A, B):-\operatorname{reverse}(A, C), \operatorname{head}(C, B) \cdot\} \\
\mathrm{h}_{6}=\left\{\begin{array}{l}
\operatorname{last}(A, B):-\operatorname{tail}(A, C), \operatorname{head}(C, B) . \\
\operatorname{last}(A, B):-\operatorname{reverse}(A, C), \operatorname{head}(C, B) .
\end{array}\right\} \\
\mathrm{h}_{7}=\left\{\begin{array}{l}
\operatorname{last}(A, B):-\operatorname{tail}(A, C), \operatorname{head}(C, B) . \\
\operatorname{last}(A, B):-\operatorname{tail}(A, C), \operatorname{tail}(C, D), \operatorname{head}(D, B) .\} \\
h_{8}=\left\{\begin{array}{l}
\operatorname{last}(A, B):-\operatorname{reverse}(A, C), \operatorname{tail}(C, D), \operatorname{head}(D, B) . \\
\operatorname{last}(A, B):-\operatorname{tail}(A, C), \operatorname{reverse}(C, D), \operatorname{head}(D, B) .
\end{array}\right\}
\end{array}\right\}
\end{array}\right\}
$$

$$
h_{1}=\{\operatorname{last}(A, B):-\operatorname{head}(A, B) .\}
$$

$$
h_{1}=\{\operatorname{last}(A, B):-\operatorname{head}(A, B) .\}
$$

input	output	entailed
laura	a	no
penelope	e	no
emma	m	no
james	e	no

$$
h_{1}=\{\operatorname{last}(A, B):-\operatorname{head}(A, B) .\}
$$

input	output	entailed
laura	a	no
penelope	e	no
emma	m	no
james	e	no

H 1 is too specific

Prune specialisations

$$
\mathscr{H}_{1}=\left\{\begin{array}{l}
h_{1}=\{\operatorname{last}(A, B):-\operatorname{head}(A, B) \cdot\} \\
h_{2}=\{\operatorname{last}(A, B):-\operatorname{head}(A, B), \operatorname{empty}(A) \cdot\} \\
h_{3}=\{\operatorname{last}(A, B):-\operatorname{head}(A, B), \operatorname{reverse}(A, C), \operatorname{head}(C, B) \cdot\} \\
h_{4}=\{\operatorname{last}(A, B):-\operatorname{tail}(A, C), \operatorname{head}(C, B) \cdot\} \\
h_{5}=\{\operatorname{last}(A, B):-\operatorname{reverse}(A, C), \operatorname{head}(C, B) \cdot\} \\
h_{6}=\left\{\begin{array}{l}
\operatorname{last}(A, B):-\operatorname{tail}(A, C), \operatorname{head}(C, B) . \\
\operatorname{last}(A, B):-\operatorname{reverse}(A, C), \operatorname{head}(C, B) .
\end{array}\right\} \\
h_{7}=\left\{\begin{array}{l}
\operatorname{last}(A, B):-\operatorname{tail}(A, C), \operatorname{head}(C, B) . \\
\operatorname{last}(A, B):-\operatorname{tail}(A, C), \operatorname{tail}(C, D), \operatorname{head}(D, B) .
\end{array}\right\} \\
h_{8}=\left\{\begin{array}{l}
\operatorname{last}(A, B):-\operatorname{reverse}(A, C), \operatorname{tail}(C, D), \operatorname{head}(D, B) . \\
\operatorname{last}(A, B):-\operatorname{tail}(A, C), \operatorname{reverse}(C, D), \operatorname{head}(D, B) .
\end{array}\right\}
\end{array}\right\}
$$

Prune specialisations

$$
\mathscr{H}_{1}=\left\{\begin{array}{l}
h_{h_{1}}=\{\operatorname{last}(A, B):-\operatorname{head}(A, B), \operatorname{empty}(A) \cdot\} \\
h_{2}=\{\operatorname{last}(A, B):-\operatorname{head}(A, B), \operatorname{reverse}(A, C), \operatorname{head}(C, B) .\} \\
h_{4}=\{\operatorname{last}(A, B):-\operatorname{tail}(A, C), \operatorname{head}(C, B) \cdot\} \\
h_{5}=\{\operatorname{last}(A, B):-\operatorname{reverse}(A, C), \operatorname{head}(C, B) \cdot\} \\
h_{6}=\left\{\begin{array}{l}
\operatorname{last}(A, B):-\operatorname{tail}(A, C), \operatorname{head}(C, B) . \\
\operatorname{last}(A, B):-\operatorname{reverse}(A, C), \operatorname{head}(C, B) .
\end{array}\right\} \\
h_{7}=\left\{\begin{array}{l}
\operatorname{last}(A, B):-\operatorname{tail}(A, C), \operatorname{head}(C, B) . \\
\operatorname{last}(A, B):-\operatorname{tail}(A, C), \operatorname{tail}(C, D), \operatorname{head}(D, B) .
\end{array}\right\} \\
h_{8}=\left\{\begin{array}{l}
\operatorname{last}(A, B):-\operatorname{reverse}(A, C), \operatorname{tail}(C, D), \operatorname{head}(D, B) . \\
\operatorname{last}(A, B):-\operatorname{tail}(A, C), \operatorname{reverse}(C, D), \operatorname{head}(D, B) .
\end{array}\right\}
\end{array}\right\}
$$

Prune specialisations

Prune specialisations

$$
h_{4}=\{\operatorname{last}(A, B):-\operatorname{tail}(A, C), \operatorname{head}(C, B) .\}
$$

$$
h_{4}=\{\operatorname{last}(A, B):-\operatorname{tail}(A, C), \operatorname{head}(C, B) .\}
$$

input	output	entailed
laura	a	yes
penelope	e	yes
emma	m	yes
james	e	no

$$
h_{4}=\{\operatorname{last}(A, B):-\operatorname{tail}(A, C), \operatorname{head}(C, B) .\}
$$

input	output	entailed
laura	a	yes
penelope	e	yes
emma	m	yes
james	e	no

H 4 is too general

Prune generalisations

Prune generalisations

Prune generalisations

Prune generalisations

$$
h_{5}=\{\operatorname{last}(A, B):-\operatorname{reverse}(A, C), \operatorname{head}(C, B) .\}
$$

$$
h_{5}=\{\operatorname{last}(A, B):-\operatorname{reverse}(A, C), \operatorname{head}(C, B) .\}
$$

input	output	entailed
laura	a	yes
penelope	e	yes
emma	m	no
james	e	no

H5 does not fail, so return it

Popper

1. Generate (ASP)

2. Test (Prolog)
3. Constrain (ASP)

Popper

1. Generate (ASP)
2. Test (Prolog)
3. Explain (Prolog)
4. Combine (ASP)
5. Constrain (ASP)

Popper - why does it work?

Decomposes the learning problem

Popper - why does it work?

Never repeats itself

Popper - why does it work?

Reasons about syntax, not semantics

Popper - why does it work?

Uses the right tool for the job

Popper advantages

Optimality
Recursion
Infinite BK
Complex numerical reasoning
Predicate invention
Programs with many rules
Programs with moderately sized rules

Popper disadvantages

Noisy data
Cannot learn large rules (20+ literals)

Part 5: Applications

Robot scientist

Robot scientist

Robot scientist

The first machine to discover new scientific knowledge independently of its human creators

Drug design

King et al. Proceedings of the National Academy of Sciences, 1992

Drug design

great(A,B):-
struc(A,C,D,E),
struc(B,F,h,h),
h_donor(C,hdonO),
polarisable(C,polaril),
flex(F,G),
flex(C,H),
great_flex(G,H),
great6_flex(G).

Drug design

Drug A is better than drug B if:
drug B has no substitutions at positions 4 and 5,
and drug B at position 3 has flexibility >6,
and $\operatorname{drug} A$ at position 3 has polarisability $=1$,
and drug A at position 3 has hydrogen donor $=0$, and drug A at position 3 is less flexible than drug B at position 3.

Ando, Howard Y., et al. "Discovering H-bonding rules in crystals with inductive logic programming." Molecular pharmaceutics 3.6 (2006): 665-674.

Scientific discovery

bind(A):-
has_aminoacid(A,B,asp), atom_to_atom_dist(B,B,'N','OD2',4.6,0.5), has_amino_acid(A,C,leu),
has_amino_acid(A,D,cys),
atom_to_center_dist(B, 'C',7.6,0.5).

Data curation

task	input	output
f	philip.larkin@sj.ox.ac.uk	Philip Larkin

Data curation

task	input	output
f	philip.larkin@sj.ox.ac.uk	Philip Larkin

```
f(A,B):-
    inv1(A,C),skip1(C,D),space(D,E),
    inv1(E,F),skiprest(F,B).
inv1(A,B):-
    uppercase(A,C),copyword(C,B).
```


Data curation

task	input	output
f	philip.larkin@sj.ox.ac.uk	Philip Larkin

```
f(A,B):-
    inv1(A,C),skip1(C,D),space(D,E),
    inv1(E,F),skiprest(F,B).
inv1(A,B):-
    uppercase(A,C),copyword(C,B).
```

~10 seconds

Data curation

task	input	output
g	tony	Tony

Data curation

task	input	output
g	tony	Tony
g(A,B):-uppercase(A,C),copyword(C,B).		

Data curation

task	input	output
g	tony	Tony
f	philip.larkin@sj.ox.ac.uk	Philip Larkin

g(A,B):-uppercase(A,C),copyword(C,B).

Data curation

task	input	output
g	tony	Tony
f	philip.larkin@sj.ox.ac.uk	Philip Larkin

g(A,B):-uppercase(A,C),copyword(C,B).
f(A,B):-g(A,C),skip1(C,D),space(D,E), g(E,F),skiprest(F,B).

Data curation

task	input	output
g	tony	Tony
f	philip.larkin@sj.ox.ac.uk	Philip Larkin

g(A,B):-uppercase(A,C),copyword(C,B).
f(A,B):-g(A,C),skip1(C,D),space(D,E), g(E,F),skiprest(F,B).

Data curation

Game playing

Part 6: Challenges and opportunities

Part 6: Challenges and opportunities

Challenges

Usability

"while over 100 ILP systems have been constructed since 1991, less than a handful can even begin to be used meaningfully by ILP practitioners other than the original developers"

Usability

Many systems are prototypes and are not maintained
Systems are inconsistent among themselves (w.r.t. language bias)

Only the developers know how to use the systems properly

Usability

"You often need a PhD in ILP to use any of the tools"

What do we need?

Better engineered tools

What do we need?

Better maintained tools

What do we need?

Standardisation

What do we need?

Standardisation

Dimacs

DIMACS format is a standard interface to SAT solvers.

Language bias

The biggest deterrent from ILP

Language bias

weak bias: too slow to be usable
strong bias: fast learning but might exclude the target program

Language bias what should we do?

Automatically identify an appropriate language bias

A vastly under-researched area of ILP!

Predicate invention

Predicate invention is central for complex tasks

Predicate invention

Predicate invention

Predicate invention

Challenge: what is a useful predicate to invent?
Recent progress: find reoccurring subprograms from available solutions to similar problems

Predicate invention

Discover useful and reusable abstractions before and during learning

Learning from raw data

Learning from raw data

ILP assumes data to be structured, but plenty of data available in raw formats

connected (A, B) :- edge(A,B).
connected(A,B):- edge(A,C),connected(C,B).

Not every problem is representable in symbolic form

Learning from raw data

Some progress in recent years

Example ($\langle x, y\rangle$):
f(1 1, , (3, Bi, 15).

Abducible Primitives (B):
$\operatorname{add}([A, B \mid T],[C \mid T]):-C \#=A+B$. $\operatorname{mult}([A, B \mid T],[C \mid T]):-C \#=A * B$ eq([A|-], B) :-A \#=B.
head([H|_], H).
$\operatorname{tail}\left(\left[_\mid T\right], T\right)$.
Neural Probabilistic facts $\left(p_{\theta}(z \mid x)\right)$: $\mathrm{nn}(1=0,0.02) \cdot \mathrm{nn}(1=1,0.39)$.
$\operatorname{nn}(B=0,0.09) \cdot n n(B=1,0.02)$
$\mathrm{nn}(\boldsymbol{B}=0,0.07) . \mathrm{nn}(\boldsymbol{B}=1,0.00)$.

Learning from raw data

What should we aim for?

Techniques that treat learning to perceive and learning a program as integrated components

Learning with uncertain data

ILP assumes that $B K$ is correct, but real world is often uncertain

Do birds fly?
 How about this bird?

Learning with uncertain data

Various probabilistic logics have been developed since '90s

Challenge: probabilistic logic programs are not efficient
0.8 :: weather(sunny).

Query: what is the probability that
a particular statement is true?

Problog, Markov logic networks, Probabilistic Soft Logic, .

Learning with uncertain data

What should we aim for?

Handling uncertainties in BK, especially in lifelong learning

Relevance of BK

BK is treated as a monolithically construct
Only a tiny percentage of BK is relevant for a task
How do we discover a relevant part of BK?

Scalability?

"ILP does not scale to real-world problems"

What does scalability mean?

What does scalability mean?

Many rules?
Large rules?
Large numbers of examples?
Large amounts of BK?

What does scalability mean?

Almost all ILP systems

can learn programs with 100s of rules
Large rules?

Large numbers of examples?

Large amounts of BK?

What does scalability mean?

Aany rules?
targe rules?

Aleph can learn

programs with rules with
100s of literals
Large numbers of examples?
Large amounts of BK?

What does scalability mean?

Many rules?
targe rules?

QuickFOIL can learn programs from 2+ million examples

Large numbers of examples?

Large amounts of BK?

What does scalability mean?

Aany rules?
targe rules?
targe numbers of examples?
targe amounts of BK?
QuickFOIL can learn
programs from 200
million background facts

What is not scalable?

Learning programs with long chains of reasoning

Part 6: Challenges and opportunities

Grand challenges

Challenging problems

Push ILP beyond what is currently possible
Require some of the outlined challenges to be solved

Abstraction and Reasoning Corpus

Find the largest object and copy it

Abstraction and Reasoning Corpus

Identify the lines, complete them, and paint with the most frequent color

Abstraction and Reasoning Corpus

Connect yellow boxes through purple pixels, you are allowed to turn only at the green box

Abstraction and Reasoning Corpus

Mirror over the green line

Abstraction and Reasoning Corpus

"Simple" high-level solutions, but requires to bridge the gap from pixels

Only a few examples of every task

Solutions are programs

Inductive general game playing

Can we learn the rules (semantics) of games from observations?

Rock, paper, scissors draws (P):-

```
    next_score(P,N):-
        true_score(P,N),
        draws(P).
    next_score(P,N):-
        true_score(P,N),
        loses(P).
    next_score(P,N2):-
        true_score(P,N1),
        succ(N2,N1),
        wins(P). does(P,A), does( \(\mathrm{Q}, \mathrm{A}\) ), distinct \((P, Q)\).
loses(P):does(P,A1), does(Q,A2), distinct(P,Q), beats(A2,A1). wins(P):-
does(P,A1), does(Q,A2), distinct(P,Q), beats(A1,A2).
```

*draws/1, loses/1, wins/1 are not provided as BK!

Why is IGGP interesting?

Many diverse games
Not hand-crafted by a system designer
Cannot predefine the perfect language bias
Need to learn perfect rules!

IGGP is hard

SOTA performance is learning perfect rules for 40% of the games

What is needed for IGGP?

Negation
Predicate invention
Very large rules
Not overfitting

IGGP is hard

Need to invent the concept of a line and reason about it

Large biological knowledge bases

Vast amounts of biological data
Protein interaction networks
Gene expressions
Molecular functional interactions

Large biological knowledge bases

- Many of them are relational
- Require discovering rules about interactions
- Need to be explainable
- Early successes of ILP

Visual question answering

Is the umbrella upside down?

Where is the child sitting? fridge

arms

How many children are in the bed?

Visual question answering

- Need to understand an image
- Turn question into a query
- Integrate common sense knowledge

Scientific discovery

- Learn with prior knowledge
- Hypotheses need to be interpretable
- Test and refine
- Experiments should verifiable

Part 6: Challenges and opportunities

Opportunities

Loads of opportunities

Constraint solving community

Recent approaches frame the ILP problem as a constraint problem:

- ASPAL
- ATOM
- ILASP
- Popper
- HEXIL
- Apperception

Constraint solving community

Recent approaches frame the ILP problem as a constraint problem:

- ASPAL
- ATOM
- ILASP

All (except ATOM) use ASP

- Popper
- HEXIL
- Apperception

Constraint solving opportunities

Can we model these problems better?
Are other solving approaches better (SAT,SMT,CP)?

Database/Datalog community

For many ILP applications, Datalog suffices
Databases can help scale ILP significantly (QuickFOIL)

Database/Datalog opportunities

Can we use ideas from databases to ILP scale to larger amounts of BK?

Can we use ILP for query synthesis in Datalog/SOL systems?

Knowledge representation community

ILP solves the knowledge acquisition problem

Knowledge representation community

How can we assemble large (consistent) knowledge bases with ILP?
Meta-reasoning: can what we know help us to learn new things faster?

Wrap-up

Wrap up

Inductive logic programming: ML + logic

Attractive features: Small data, interpretable, relational

Attractive capabilities: Recursion, optimality, predicate invention

Lots of opportunities for interaction with other communities

References

Inductive Logic Programming. S. Muggleton. New Generation Computing 1991.

Inductive logic programming at 30: a new introduction A. Cropper and S. Dumančić, JAIR 2022.

