
Inductive logic programming:
an introduction and recent advances

AAAI ’23 Tutorial

Part I: Introduction

Part I: Introduction
Motivation

Let’s play a game

Positive Negative

There is one object of each color

Positive Negative

There are two objects in contact with one small and not blue

Let’s play a game

Input Output

inductive gxkvewfpk

logic ekiqn

programming ipkooctiqtr

Add two to each element and reverse

Let’s play a game

Positive Negative

There is a hydrogen receptor connected to two zinc sites with single bonds

Let’s play a game

Positive Negative

Let’s use ML on these problems

What do we need?

Learn from small a number of examples

Playing Zendo with ML

Features

Playing Zendo with ML

Features
red blue green
rectangle triangle square circle
medium large small
contact_p1 contact_p2
contact_p3 contact_p4
x_pos y_pos
right_of_p1 left_of_p1 ...

Playing Zendo with ML
red green blue triangle rectan

gle square circle contac
t_p1

contac
t_p2

contac
t_p3

contac
t_p4 small mediu

m large

piece1 0 1 0 0 0 1 0 0 1 0 0 1 0 0

piece2 0 0 1 1 0 0 0 1 0 0 0 1 0 0

piece3 1 0 0 0 0 0 1 0 0 0 0 0 1 0

piece4 0 1 0 1 0 0 0 0 0 0 0 0 1 0

Learn explainable solutions

Understanding networks with ML

Features

hacc hdonor
zincsite
singlebond_a1 singlebond_a2
singlebond_a1 doublebond_a1
doublebond_a2 doublebond_a3
distance_a1 distance_a2
distance_a3...

Understanding networks with ML
hacc hdonor zincsite singlebond

_a1
singlebond

_a2
singlebond

_a3
doublebon

d_a1
doublebon

d_a2
doublebon

d_a3

a1 0 0 1 0 1 0 0 0 0

a2 0 1 0 1 0 1 0 0 0

a3 1 0 0 0 1 0 0 0 0

a4 1 0 0 0 0 1 0 0 0

Learn from highly relational data

Breaking the cipher with ML

Features

Input Output

inductive gxkvewfpk

logic ekiqn

programming ipkooctiqtr

input_1_a input_1_b input_1_c
input_2_a input_2_b input_2_c
input_3_a input_3_b input_3_c
...

Breaking the cipher with ML
input_1_a input_1_b input_1_c input_1_i input_1_j input_1_k input_1_l input_1_m input_1_p

inductive 0 0 0 1 0 0 0 0 0

logic 0 0 0 0 0 0 1 0 0

programmin
g 0 0 0 0 0 0 0 0 1

Input Output

inductive gxkvewfpk

logic ekiqn

programming ipkooctiqtr

Breaking the cipher with ML

a b c d e f g h i j …

Shift by 3

Breaking the cipher with ML

a b c d e f g h i j …

Shift by 3

0 1 2 3 4 5 6 7

Reverse

Indices of an array

Learn from small a number of examples

Explainable solutions

Learn from highly relational data

What is ILP good at?

Learn from small a number of examples

Learn from small a number of examples

Explainable solutions

Learn from small a number of examples

Explainable solutions

Learn from highly relational data

ILP is not a silver bullet

Goal of this tutorial

Developing intuition about ILP and its possibilities

Goal of this tutorial

For technical details, check the accompanying publication

Outline

1. Logic: What and why?

2. Building an ILP system

3. Features and applications

4. Challenges and opportunities

Please ask questions and interrupt!

Part I: Introduction
What is ILP?

ML + logic

Data
(features

ML
algorithm

Model

ML

Examples

ILP
algorithm

Model/
hypothesis

BK

ILP

Examples

ILP
algorithm

Model/
hypothesis

BK

ILP

Logic program

Logic program

Logic program

Program synthesis

Logic refresher

Socrates is a man.
All men are mortal.

Socrates is a man.
All men are mortal.
———————————————
Therefore, Socrates is mortal.

Socrates is a man.
All men are mortal.
———————————————
Therefore, Socrates is mortal.

man(socrates).
∀A man(A) → mortal(A).

atom

rule

Socrates is a man.
All men are mortal.
———————————————
Therefore, Socrates is mortal.

man(socrates).
∀A man(A) → mortal(A).

if this side is true

then this side is true

Socrates is a man.
All men are mortal.
———————————————
Therefore, Socrates is mortal.

man(socrates).
∀A man(A) → mortal(A).

Socrates is a man.
All men are mortal.
———————————————
Therefore, Socrates is mortal.

man(socrates).
∀A man(A) → mortal(A).
———————————————
mortal(socrates).

∀A man(A) → mortal(A).

∀A man(A) → mortal(A).

⇊

man(A) → mortal(A).

variables are all
universally quantified

∀A man(A) → mortal(A).

⇊

man(A) → mortal(A).

⇊

mortal(A) ← man(A).

flip the implication
arrow direction

∀A man(A) → mortal(A).

⇊

man(A) → mortal(A).

⇊

mortal(A) ← man(A).

⇊

mortal(A):- man(A).replace the arrow with :-

∀A man(A) → mortal(A).

⇊

man(A) → mortal(A).

⇊

mortal(A) ← man(A).

⇊

mortal(A):- man(A).

valid Prolog / Datalog / ASP rule

∀A.∀B knows(A,B) ∧ rich(B) ∧ famous(B) → happy(A).

∀A.∀B knows(A,B) ∧ rich(B) ∧ famous(B) → happy(A).

⇊

knows(A,B) ∧ rich(B) ∧ famous(B) → happy(A).

∀A.∀B knows(A,B) ∧ rich(B) ∧ famous(B) → happy(A).

⇊

knows(A,B) ∧ rich(B) ∧ famous(B) → happy(A).

⇊

happy(A) ← knows(A,B) ∧ rich(B) ∧ famous(B).

∀A.∀B knows(A,B) ∧ rich(B) ∧ famous(B) → happy(A).

⇊

knows(A,B) ∧ rich(B) ∧ famous(B) → happy(A).

⇊

happy(A) ← knows(A,B) ∧ rich(B) ∧ famous(B).

⇊

happy(A):- knows(A,B), rich(B), famous(B).

What does this have to do with programming?

empty([]).
head([H|_],H).
tail([_|T],T).

Logic programs

empty([]).
head([H|_],H).
tail([_|T],T).

Logic programs

empty([]).
head([H|_],H).
tail([_|T],T).

Logic programs

empty([]).
head([H|_],H).
tail([_|T],T).

Logic programs

length([],0).
length([H|T],N2):-
 length(T,N1),
 N2 is N1+1.

Logic programs

length([],0).
length([H|T],N2):-
 length(T,N1),
 N2 is N1+1.

Logic programs

length([],0).
length([H|T],N2):-
 length(T,N1),
 N2 is N1+1.

Logic programs

Any questions?

Why logic programs?

Relational

Declarative

Interpretable

Universal

Relational data

edge(oxford_circus, bond_street).
edge(oxford_circus, piccadilly_circus).
edge(south_kensington, gloucester_road).

connected(S1,S2):- edge(S1,S2).
connected(S1,S2):- edge(S1,S3), connected(S3,S2).

Declarative

Say what you what to happen, not how it should happen

zendo(A):- piece(A,C),contact(C,B),size(B,E),
 small(E),color(B,D),not_blue(D).

Can execute/evaluate the rule in any order. If any literal fails, the whole rule fails.

zendo(A):- piece(A,C),contact(C,B),size(B,E),
 small(E),color(B,D),not_blue(D).
zendo(A):- piece(A,C),contact(C,B),size(B,E),
 small(E),color(B,D),not_red(D).

If any rule succeeds, the whole program succeeds.

Interpretable

zendo(A):- piece(A,C),contact(C,B),size(B,E),
 small(E),color(B,D),not_blue(D).
zendo(A):- piece(A,C),contact(C,B),size(B,E),
 small(E),color(B,D),not_red(D).

You can understand this program without having to take a course in logic programming!

Universal

Universal

Universal

Universal

Why not logic programs?

Less control

Few people use them

Iffy software

Questions?

Break time

Part I: Introduction
What is ILP?

Zendo in DT

Zendo in DT
p1_notblue

Zendo in DT
p1_notblue

yes

Zendo in DT
p1_notblue

yes no

Zendo in DT
p1_notblue

yes no

yes

Zendo in DT
p1_notblue

yes no

positive

yes

Zendo in DT
p1_notblue

yes no

positive

yes

Zendo in DT
p1_notblue

yes no

positive

yes

Zendo in DT
p1_notblue

p1_small

yes no

positive

yes

Zendo in DT
p1_notblue

p1_small

yes no

p2_notblue

positive

yes

Zendo in DT
p1_notblue

p1_small

yes no

p2_notblue

positive

yes

Zendo in DT
p1_notblue

p1_small

yes no

p2_notblue
yes

positive

yes

Zendo in DT
p1_notblue

p1_small

yes no

p2_notblue
yes

positive

yes

Zendo in DT
p1_notblue

p1_small

yes no

p2_notblue
yes yes

positive

yes

Zendo in DT
p1_notblue

p1_small

yes no

p2_notblue
yes yes

positive

yes

Zendo in DT
p1_notblue

p1_small

yes no

p2_notblue
yes yes no

positive

yes

Zendo in DT
p1_notblue

p1_small

yes no

p2_notblue

p1_contact
_p2

yes yes no

positive

yes

Zendo in DT
p1_notblue

p1_small

yes no

p2_notblue

p1_contact
_p2

yes

p2_small

yes no

positive

yes

Zendo in DT
p1_notblue

p1_small

yes no

p2_notblue

p1_contact
_p2

yes

p2_small

yes no

p3_notblue

positive

yes

Zendo in DT
p1_notblue

p1_small

yes no

p2_notblue

p1_contact
_p2

yes

p2_small

yes no

p3_notblue
no

positive

yes

Zendo in DT
p1_notblue

p1_small

yes no

p2_notblue

p1_contact
_p2

yes

p2_small

yes no

p3_notblue
no

positive

yes no

Zendo in DT
p1_notblue

p1_small

yes no

p2_notblue

p1_contact
_p2

yes

p2_small

yes no

p3_notblue
no

positive

yes no

Zendo in DT
p1_notblue

p1_small

yes no

p2_notblue

p1_contact
_p2

yes

p2_small

yes no

p3_notblue
no

positive

yes no

Zendo in DT
p1_notblue

p1_small

yes no

p2_notblue

p1_contact
_p2

yes

p2_small

yes no

p3_notblue
no

positive

yes no

Zendo in DT
p1_notblue

p1_small

yes no

p2_notblue

p1_contact
_p2

yes

p2_small

yes no

p3_notblue
no

positive

yes no

Zendo in DT
p1_notblue

p1_small

yes no

p2_notblue

p1_contact
_p2

yes

p2_small

yes no

p3_notblue
no

positive

yes no yes

Zendo in DT
p1_notblue

p1_small

yes no

p2_notblue

p1_contact
_p2

yes

p2_small

yes no

p3_notblue
no

positive

yes no yes

...

Zendo in DT
p1_notblue

p1_small

yes no

p2_notblue

p1_contact
_p2

yes

p2_small

yes no

p3_notblue
no

positive

yes no

p1_contact
_p3

yes

...

Zendo in DT
p1_notblue

p1_small

yes no

p2_notblue

p1_contact
_p2

yes

p2_small

yes no

p3_notblue
no

positive

yes no

p1_contact
_p3 p4_notblue

yes

...

Zendo in DT
p1_notblue

p1_small

yes no

p2_notblue

p1_contact
_p2

yes

p2_small

yes no

p3_notblue
no

positive

yes no

p1_contact
_p3 p4_notblue

no

yes

...

Zendo in DT
p1_notblue

p1_small

yes no

p2_notblue

p1_contact
_p2

yes

p2_small

yes no

p3_notblue
no

positive

yes no

p1_contact
_p3 p4_notblue

no

yes

...
no

Zendo in DT
p1_notblue

p1_small

yes no

p2_notblue

p1_contact
_p2

yes

p2_small

yes no

p3_notblue
no

positive

yes no

p1_contact
_p3 p4_notblue

no

yes

...
noyes

Zendo in DT
p1_notblue

p1_small

yes no

p2_notblue

p1_contact
_p2

yes

p2_small

yes no

p3_notblue

yes

no

positive

yes no

p1_contact
_p3 p4_notblue

no

yes

...
noyes

Zendo in DT
p1_notblue

p1_small

yes no

p2_notblue

p1_contact
_p2

yes

p2_small

yes no

p3_notblue

yes

no

positive

yes no

p1_contact
_p3 p4_notblue

no

yes

...
noyes

Zendo in DT
p1_notblue

p1_small

yes no

p2_notblue

p1_contact
_p2

yes

p2_small

yes no

p3_notblue

yes

no

positive

yes no

p1_contact
_p3 p4_notblue

no

yes

...
noyes

Zendo in DT
p1_notblue

p1_small

yes no

p2_notblue

p1_contact
_p2

yes

p2_small

yes no

p3_notblue

yes

no

positive

yes no

p1_contact
_p3 p4_notblue

no

yes

...
noyes

Zendo in DT
p1_notblue

p1_small

yes no

p2_notblue

p1_contact
_p2

yes

p2_small

yes no

p3_notblue

yes

no

positive

yes no

p1_contact
_p3 p4_notblue

no

yes

...
noyes

Zendo in DT
p1_notblue

p1_small

yes no

p2_notblue

p1_contact
_p2

yes

p2_small

yes no

p3_notblue

yes

no

positive

yes no

p1_contact
_p3 p4_notblue

no

yes

...

...

noyes

Zendo in DT
p1_notblue

p1_small

yes no

p2_notblue

p1_contact
_p2

yes

p2_small

yes no

p3_notblue

yes

no

positive

yes no

p1_contact
_p3 p4_notblue

no

yes

...

...

noyes

...

Zendo in DT
p1_notblue

p1_small

yes no

p2_notblue

p1_contact
_p2

yes

p2_small

yes no

p3_notblue

yes

no

positive

yes no

p1_contact
_p3 p4_notblue

no

negative

yes

...

...

noyes

...

Zendo in DT
p1_notblue

p1_small

yes no

p2_notblue

p1_contact
_p2

yes

p2_small

yes no

p3_notblue

yes

no

positive

yes no

p1_contact
_p3 p4_notblue

no

negative

yes

...

...

noyes

...
positive

Zendo in ILP

Zendo in ILP % positive example
pos(zendo(structure1)).

% background knowledge
piece(structure1, p1).
piece(structure1, p2).
green(p1).
blue(p2).
small(p1).
small(p2).
contact(p1,p2).
x_pos(p1,1).
x_pos(p2,1).

Zendo in ILP

Zendo in ILP

zendo(A):-
 piece(A,C),
 contact(C,B),
 size(B,E),
 small(E),
 color(B,D),
 not_blue(D).

Encryption in DT
input_1_a

output_10_c

yes no

input_1_b

input_2_a

yes yes no

input_1_c

yes

noyes no

input_2_b input_1_d
no

yes

...

...

noyes

...

Input Output
inductive gxkvewfpk

logic ekiqn

programming ipkooctiqtr

noyes

... ...

output_9_b

...

Encryption in ILP

Encryption in ILP
% positive examples
pos(f([i,n,d,u,c,t,i,v,e],[g,x,k,v,e,w,f,p,k])).
pos(f([l,o,g,i,c],[e,k,i,q,n])).
pos(f([p,r,o,g,r,a,m,m,i,n,g],[i,p,k,o,o,c,t,i,q,t,r])).

% background knowledge
head([H|_], H).
tail([_|T], T).
empty([]).
succ(A,B) :- B is A+1.
ord(a,97).
ord(b,98). 
inttochar(97,a). 
inttochar(98,b). 
...

Encryption in ILP

encryption(A,B):-
map(A,C,inv_1),
reverse(C,B).

inv_1(A,B):-
ord(A,E),
succ(E,C),
succ(C,D),
inttochar(D,B).

Input Output

inductive gxkvewfpk

logic ekiqn

programming ipkooctiqtr

Networks in DT

Networks in DT
a1_hacc

Networks in DT
a1_hacc

yes

Networks in DT
a1_hacc

yes

yes

Networks in DT
a1_hacc

yes no

yes

Networks in DT
a1_hacc

yes no

positive

yes

Networks in DT
a1_hacc

yes no

positive

yes

Networks in DT
a1_hacc

yes no

yes

positive

yes

Networks in DT
a1_hacc

yes no

yes

positive

yes

Networks in DT
a1_hacc

yes no

yes

positive

yes

Networks in DT
a1_hacc

a2_hacc

yes no

yes

positive

yes

Networks in DT
a1_hacc

a2_hacc

yes no

a1_zincsite

yes

positive

yes

Networks in DT
a1_hacc

a2_hacc

yes no

a1_zincsite

yes

positive

yes

Networks in DT
a1_hacc

a2_hacc

yes no

a1_zincsite
yes

yes

positive

yes

Networks in DT
a1_hacc

a2_hacc

yes no

a1_zincsite
yes

yes

positive

yes

Networks in DT
a1_hacc

a2_hacc

yes no

a1_zincsite
yes yes

yes

positive

yes

Networks in DT
a1_hacc

a2_hacc

yes no

a1_zincsite
yes yes

yes

positive

yes

Networks in DT
a1_hacc

a2_hacc

yes no

a1_zincsite
yes yes no

yes

positive

yes

Networks in DT
a1_hacc

a2_hacc

yes no

a1_zincsite

bond_a1_a
2_double

yes yes no

yes

positive

yes

Networks in DT
a1_hacc

a2_hacc

yes no

a1_zincsite

bond_a1_a
2_double

yes

a2_hacc

yes no

yes

positive

yes

Networks in DT
a1_hacc

a2_hacc

yes no

a1_zincsite

bond_a1_a
2_double

yes

a2_hacc

yes no

a2_hacc
yes

positive

yes

Networks in DT
a1_hacc

a2_hacc

yes no

a1_zincsite

bond_a1_a
2_double

yes

a2_hacc

yes no

a2_hacc
noyes

positive

yes

Networks in DT
a1_hacc

a2_hacc

yes no

a1_zincsite

bond_a1_a
2_double

yes

a2_hacc

yes no

a2_hacc
noyes no

positive

yes

Networks in DT
a1_hacc

a2_hacc

yes no

a1_zincsite

bond_a1_a
2_double

yes

a2_hacc

yes no

a2_hacc
noyes no

positive

yes

Networks in DT
a1_hacc

a2_hacc

yes no

a1_zincsite

bond_a1_a
2_double

yes

a2_hacc

yes no

a2_hacc
noyes no

positive

yes

Networks in DT
a1_hacc

a2_hacc

yes no

a1_zincsite

bond_a1_a
2_double

yes

a2_hacc

yes no

a2_hacc
noyes no

positive

yes

Networks in DT
a1_hacc

a2_hacc

yes no

a1_zincsite

bond_a1_a
2_double

yes

a2_hacc

yes no

a2_hacc
noyes no

positive

yes

Networks in DT
a1_hacc

a2_hacc

yes no

a1_zincsite

bond_a1_a
2_double

yes

a2_hacc

yes no

a2_hacc
noyes no yes

positive

yes

Networks in DT
a1_hacc

a2_hacc

yes no

a1_zincsite

bond_a1_a
2_double

yes

a2_hacc

yes no

a2_hacc
noyes no

bond_a1_a
2_single

yes

positive

yes

Networks in DT
a1_hacc

a2_hacc

yes no

a1_zincsite

bond_a1_a
2_double

yes

a2_hacc

yes no

a2_hacc
noyes no

bond_a1_a
2_single a2_zincsite

yes

positive

yes

Networks in DT
a1_hacc

a2_hacc

yes no

a1_zincsite

bond_a1_a
2_double

yes

a2_hacc

yes no

a2_hacc
noyes no

bond_a1_a
2_single a2_zincsite

yes

...

positive

yes

Networks in DT
a1_hacc

a2_hacc

yes no

a1_zincsite

bond_a1_a
2_double

yes

a2_hacc

yes no

a2_hacc

yes

noyes no

bond_a1_a
2_single a2_zincsite

yes

...

positive

yes

Networks in DT
a1_hacc

a2_hacc

yes no

a1_zincsite

bond_a1_a
2_double

yes

a2_hacc

yes no

a2_hacc

yes

noyes no

bond_a1_a
2_single a2_zincsite

no

yes

...

positive

yes

Networks in DT
a1_hacc

a2_hacc

yes no

a1_zincsite

bond_a1_a
2_double

yes

a2_hacc

yes no

a2_hacc

yes

noyes no

bond_a1_a
2_single a2_zincsite

no

yes

...
no

positive

yes

Networks in DT
a1_hacc

a2_hacc

yes no

a1_zincsite

bond_a1_a
2_double

yes

a2_hacc

yes no

a2_hacc

yes

noyes no

bond_a1_a
2_single a2_zincsite

no

yes

...
noyes

positive

yes

Networks in DT
a1_hacc

a2_hacc

yes no

a1_zincsite

bond_a1_a
2_double

yes

a2_hacc

yes no

a2_hacc

yes

noyes no

bond_a1_a
2_single a2_zincsite

no

yes

...
noyes

dist_a1_a2 <
2.78

positive

yes

Networks in DT
a1_hacc

a2_hacc

yes no

a1_zincsite

bond_a1_a
2_double

yes

a2_hacc

yes no

a2_hacc

yes

noyes no

bond_a1_a
2_single a2_zincsite

no

yes

...
noyes

dist_a1_a2 <
2.78

positive

yes

Networks in DT
a1_hacc

a2_hacc

yes no

a1_zincsite

bond_a1_a
2_double

yes

a2_hacc

yes no

a2_hacc

yes

noyes no

bond_a1_a
2_single a2_zincsite

no

yes

...
noyes

dist_a1_a2 <
2.78

positive

yes

Networks in DT
a1_hacc

a2_hacc

yes no

a1_zincsite

bond_a1_a
2_double

yes

a2_hacc

yes no

a2_hacc

yes

noyes no

bond_a1_a
2_single a2_zincsite

no

yes

...
noyes

dist_a1_a2 <
2.78

positive

yes

Networks in DT
a1_hacc

a2_hacc

yes no

a1_zincsite

bond_a1_a
2_double

yes

a2_hacc

yes no

a2_hacc

yes

noyes no

bond_a1_a
2_single a2_zincsite

no

yes

...
noyes

dist_a1_a2 <
2.78

positive

yes

Networks in DT
a1_hacc

a2_hacc

yes no

a1_zincsite

bond_a1_a
2_double

yes

a2_hacc

yes no

a2_hacc

yes

noyes no

bond_a1_a
2_single a2_zincsite

no

yes

...
noyes

...

dist_a1_a2 <
2.78

positive

yes

Networks in DT
a1_hacc

a2_hacc

yes no

a1_zincsite

bond_a1_a
2_double

yes

a2_hacc

yes no

a2_hacc

yes

noyes no

bond_a1_a
2_single a2_zincsite

no

yes

...
noyes

... ...

dist_a1_a2 <
2.78

positive

yes

Networks in DT
a1_hacc

a2_hacc

yes no

a1_zincsite

bond_a1_a
2_double

yes

a2_hacc

yes no

a2_hacc

yes

noyes no

bond_a1_a
2_single a2_zincsite

no

yes

...
noyes

... ...

dist_a1_a2 <
2.78

positive

yes
...

Networks in DT
a1_hacc

a2_hacc

yes no

a1_zincsite

bond_a1_a
2_double

yes

a2_hacc

yes no

a2_hacc

yes

noyes no

bond_a1_a
2_single a2_zincsite

no

yes

...

...

noyes

... ...

dist_a1_a2 <
2.78

positive

yes
...

Networks in ILP

Networks in ILP % positive example
pharma(molecule1).

% negative example
pharma(molecule2).

% background knowledge
zincsite(a1).
hdonor(a2).
hacc(a3).
bond(a1,a2,single).
bond(a4,a5,double).
distance(a1,a2,1.57).
distance(a2,a3,1.26).
...

Networks in ILP

Networks in ILP pharma(A):-  
 zincsite(A,B),
 hacc(A,C),
 dist(A,B,C,D),
 leq(D,3.58),
 geq(D,1.78),
 hacc(A,E),
 hacc(A,F),
 bond(A,E,F,single).
pharma(A):-
 hacc(A,B),
 hacc(A,C),
 bond(A,B,C,double),
 dist(A,B,C,D),
 leq(D,2.78).

Recap
ILP can:

• Generalise from small amount of data

• Learns hypotheses that are understandable

• Learn from relational data

Part 2: Building an ILP system

Part 2: Building an ILP system
How does ILP work?

We have told you that ILP is machine learning with logic.

Recap: Decision tree learning

Should I play tennis today?

Recap: Decision tree learning

Step one: what is the goal?

Separate positive examples from
negative ones

How do we achieve that?

Reducing information gain

Recap: Decision tree learning

Step two: how do we represent data?

Tabular data

Recap: Decision tree learning

Step three: how do the models look like?

Recursively structured trees

Leaves assign labels to data

Every node is a feature test,
 e.g., “is weather sunny?”

Tests split the data in subsets that
(don’t) satisfy the test

Recap: Decision tree learning

Step four: What is the hypothesis space?

The set of all tree up to a certain depth

Recap: Decision tree learning

Step five: How do we search the hypothesis space?

From simpler to more complicated,
step by step

Recap: Decision tree learning

From simpler to more complicated,
step by step

Step five: How do we search the hypothesis space?

What is the best first feature to split on?

Recap: Decision tree learning

Step five: How do we search the hypothesis space?

What is the best first feature to split on?

Select and commit!

From simpler to more complicated,
step by step

Recap: Decision tree learning

Step five: How do we search the hypothesis space?

What is the best feature to take next,
for points that satisfy the previous criteria?

From simpler to more complicated,
step by step

Recap: Decision tree learning

Step five: How do we search the hypothesis space?

What is the best feature to take next,
for points that satisfy the previous criteria?

Select and commit!

From simpler to more complicated,
step by step

Recap: Decision tree learning

Step five: How do we search the hypothesis space?

What is the best feature to take next,
for points that did not satisfy
the previous criteria?

From simpler to more complicated,
step by step

Recap: Decision tree learning

Step one: what is the goal?

Step two: how do we represent data?

Step three: how do the models look like?

Step four: What is the hypothesis space?

Step five: How do we search the hypothesis space?

From decision trees to ILP

Step one: what is the goal?

From decision trees to ILP

Step one: what is the goal?

Still the same, splitting positive from negative examples

From decision trees to ILP

Step one: what is the goal?

Step two: how do we represent data?

From decision trees to ILP

Step one: what is the goal?

Step two: how do we represent data?

As logic programs (facts)

weather(day1, sunny).
temperature(day1, 80).
humidity(day1, high)
wind(day1, weak).

From decision trees to ILP

Step one: what is the goal?

Step two: how do we represent data?

Step three: how do the models look like?

From decision trees to ILP

Step one: what is the goal?

Step two: how do we represent data?

Step three: how do the models look like?

As logic programs

play(Day, yes) weather(Day, sunny), wind(Day, weak)←

From decision trees to ILP

Step one: what is the goal?

Step two: how do we represent data?

Step three: how do the models look like?

Step four: What is the hypothesis space?

From decision trees to ILP

Step one: what is the goal?

Step two: how do we represent data?

Step three: how do the models look like?

Step four: What is the hypothesis space?

All valid logic programs

From decision trees to ILP

Step one: what is the goal?

Step two: how do we represent data?

Step three: how do the models look like?

Step four: What is the hypothesis space?

Step five: How do we search the hypothesis space?

From decision trees to ILP

Step one: what is the goal?

Step two: how do we represent data?

Step three: how do the models look like?

Step four: What is the hypothesis space?

Step five: How do we search the hypothesis space?

See the rest of the tutorial

Why do we want to represent everything in logic?

Part 2: Building an ILP system
How does ILP work?
Representation language

Which logic programming language?

Propositional logic

red green blue triangle rectangle square circle contact_p1 contact_p2 contact_p3 contact_p4 small medium large
piece1 0 1 0 0 0 1 0 0 1 0 0 1 0 0

piece2 0 0 1 1 0 0 0 1 0 0 0 1 0 0

piece3 1 0 0 0 0 0 1 0 0 0 0 0 1 0

piece4 0 1 0 1 0 0 0 0 0 0 0 0 1 0

piece1_green.
piece2_blue.
piece2_triangle.
piece1_contact_p2.
piece4_triangle.

Propositional logic

Limited expressivity (same as DT learners)

Difficult to model problems (not relational)

No recursion

Full first-order logic

Intractable

∀A.∃B.∀C right(A,B) ∧ right(B,C) ∧ blue(A) ∧ red(B) → contact(A,B) ∨ ¬ square(B).

Horn logic

The foundation of most automated reasoning used in SAT etc

zendo(A) ← piece(A,B), blue(B).
blue(p1).

Horn logic
Important for resolution because:

- the resolvent of two Horn clauses is itself a Horn clause
- the resolvent of a goal clause and a definite clause is a goal clause

Prolog

Search uses SLD-resolution (backwards chaining)

Prolog advantages

Turing complete

Lists and complex data structures

Complex numerical reasoning

Prolog disadvantages

Not guaranteed to terminate

Datalog

Definite programs without functional symbols and minor syntactic restrictions

Datalog advantages

Guaranteed to terminate

Sufficient for most problems in this tutorial

Has nice properties, such as a unique minimal model

Datalog disadvantages

Not Turing complete (no functional symbols)

Database vs program

If it uses logical function symbols, it is considered a program.

If it does not, it is considered a database.

Monotonicity

A logic is monotonic when adding knowledge to it does not reduce
the logical consequences of that theory.

Monotonicity

A logic is non-monotonic if some conclusions can be removed/
invalidated by adding more knowledge.

Monotonic logic

%% program
sunny.
happy:- sunny.

%% consequences
sunny.
happy.

Monotonic logic

%% program
sunny.
happy:- sunny.

%% consequences
sunny.
happy.

%% program
sunny.
happy:- sunny.
happy:- rich.

%% consequences
sunny.
happy.

Non-monotonic programs

Most use negation-as-failure (NAF) (Clark, 1977).

An atom is false if it cannot be proven true.

Non-monotonic logic

%% program
sunny.
happy:- sunny, not weekday.

%% consequences
sunny.
happy.

Non-monotonic logic

%% program
sunny.
happy:- sunny, not weekday.

%% consequences
sunny.
happy.

%% program
sunny.
happy:- sunny, not weekday.
weekday.

%% consequences
sunny.
weekday.

Non-monotonic logic

+ more compact representations

- more difficult to learn, especially recursive programs

Answer set programming

Language extensions over Datalog, such as choice rules and constraints

Answer set programming

Language extensions over Datalog, such as choice rules and constraints

A high-level modelling language for SAT/MaxSAT

Break time

Part 2: Building an ILP system
How does ILP work?
Search direction

ILP is search

How do we search the hypothesis space?

Subsumption

Subsumption

Specialisations

If we add a literal to a rule, it can only become more specific and
entail fewer examples

Specialisations

happy(A):-
 lego_builder(A).

happy(A):-
 lego_builder(A),
 enjoys_lego(A)

subsumes

Generalisations

If we add a rule to a program, it can only become more general
and entail more examples

only holds for monotonic logic!

Generalisations

happy(A):- lego_builder(A), enjoys_lego(A)

happy(A):- lego_builder(A), enjoys_lego(A).
happy(A):- lego_builder(A), knows(A,B), enjoys_lego(B).

subsumes

happy(alice):-
 lego_builder(alice),
 enjoys_lego(alice),
 knows(alice,edith),
 knows(edith,alice),
 has_friend(alice).

happy(A).

happy(A):-
 lego_builder(A).

happy(A):-
 enjoys_lego(A).

happy(A):-
 knows(A,B).

happy(alice):-
 lego_builder(A),
 enjoys_lego(A).

happy(A):-
 knows(A,edith).

Subsumption lattice

Top-down

Start with a general hypothesis and iteratively specialise it

FOIL, TILDE, HYPER, QuickFOIL, Progol*, Aleph*

happy(alice):-
 lego_builder(alice),
 enjoys_lego(alice),
 knows(alice,edith),
 knows(edith,alice),
 has_friend(alice).

happy(A).

happy(A):-
 lego_builder(A).

happy(A):-
 enjoys_lego(A).

happy(A):-
 knows(A,B).

happy(alice):-
 lego_builder(A),
 enjoys_lego(A).

happy(A):-
 knows(A,edith).

Top-down

Use example coverage to guide the search, such as through hill climbing and A*

Top-down

1. Find a good rule that covers some of the positive examples and
add it to the program

2. Repeat but focus on `uncovered` examples

Top-down advantages

Recursion

Top-down disadvantages

Inefficient

Constants

Bottom-up

Start with a specific hypothesis and iteratively generalise it

CIGOL, GOLEM, XHAIL, Progol*, Aleph*

Bottom-up

happy(alice):-
 lego_builder(alice),
 enjoys_lego(alice),
 knows(alice,edith),
 knows(edith,alice),
 has_friend(alice).

happy(A).

happy(A):-
 lego_builder(A).

happy(A):-
 enjoys_lego(A).

happy(A):-
 knows(A,B).

happy(alice):-
 lego_builder(A),
 enjoys_lego(A).

happy(A):-
 knows(A,edith).

Bottom-up

Use example coverage to guide the search, such as through hill climbing and A*

Bottom-up advantages

Fast

Constants

Bottom-up disadvantages

Optimality (overfitting)

Recursion

Top-down and bottom-up

Bottom-up:
1. Find the most specific rule R for each example

Top-down
2. Search the generalisations of R in a top-down way

Progol, Aleph

Top-down and bottom-up

Search is bound from below by step 1.

Solutions generalise well because of Step 2.

Top-down and bottom-up advantages

Efficiency

Large rules

Many rules

Top-down and bottom-up disadvantages

Overfitting

Recursion

Predicate invention

Meta-level

Search all over

ASPAL, Metagol, ILASP, HEXMIL, DILP, Apperception, Popper

Meta-level

happy(alice):-
 lego_builder(alice),
 enjoys_lego(alice),
 knows(alice,edith),
 knows(edith,alice),
 has_friend(alice).

happy(A).

happy(A):-
 lego_builder(A).

happy(A):-
 enjoys_lego(A).

happy(A):-
 knows(A,B).

happy(alice):-
 lego_builder(A),
 enjoys_lego(A).

happy(A):-
 knows(A,edith).

Meta-level

happy(alice):-
 lego_builder(alice),
 enjoys_lego(alice),
 knows(alice,edith),
 knows(edith,alice),
 has_friend(alice).

happy(A).

happy(A):-
 lego_builder(A).

happy(A):-
 enjoys_lego(A).

happy(A):-
 knows(A,B).

happy(alice):-
 lego_builder(A),
 enjoys_lego(A).

happy(A):-
 knows(A,edith).

Meta-level

Use a dedicated solver (SAT/SMT/ASP) to perform to search

Meta-level advantages

Recursion

Completeness

Optimality

Meta-level disadvantages

Small domains

Small rules

Part 2: Building an ILP system
How does ILP work?
Language bias

How to define the hypothesis space?

The hypothesis is the space of all possible hypotheses that can be built.
An inductive bias is essential to restrict the hypothesis space.

Mode declarations

Specify which symbols may appear in rules (and their types and directions)

Mode declarations

modeh(*,target(+list,-char)).
modeb(*,member(+list,-char)).
modeb(*,tail(+list,-list)).
modeb(*,empty(+list)).

Specify which symbols may appear in rules (and their types and directions)

Mode declarations

target(A,B):- member(A,B).

Specify which symbols may appear in rules (and their types and directions)

modeh(*,target(+list,-char)).
modeb(*,member(+list,-char)).
modeb(*,tail(+list,-list)).
modeb(*,empty(+list)).

Mode declarations

target(A,B):- member(A,B).

target(A,B):- tail(A,C), member(C,B).

Specify which symbols may appear in rules (and their types and directions)

modeh(*,target(+list,-char)).
modeb(*,member(+list,-char)).
modeb(*,tail(+list,-list)).
modeb(*,empty(+list)).

Mode declarations

target(A,B):- member(A,B).

target(A,B):- tail(A,C), member(C,B).

target(A,B):- tail(A,C), tail(C,B).

Specify which symbols may appear in rules (and their types and directions)

modeh(*,target(+list,-char)).
modeb(*,member(+list,-char)).
modeb(*,tail(+list,-list)).
modeb(*,empty(+list)).

Part 3: features

Recursion

connected(A,B):- edge(A,B).

Recursion

connected(A,B):- edge(A,B).
connected(A,B):- edge(A,C),edge(C,B).

Recursion

connected(A,B):- edge(A,B).
connected(A,B):- edge(A,C),edge(C,B).
connected(A,B):- edge(A,C),edge(C,D),edge(D,B).

Recursion

connected(A,B):- edge(A,B).
connected(A,B):- edge(A,C),edge(C,B).
connected(A,B):- edge(A,C),edge(C,D),edge(D,B).
connected(A,B):- edge(A,C),edge(C,D),edge(D,E),edge(E,B).

Recursion

connected(A,B):- edge(A,B).
connected(A,B):- edge(A,C),edge(C,B).
connected(A,B):- edge(A,C),edge(C,D),edge(D,B).
connected(A,B):- edge(A,C),edge(C,D),edge(D,E),edge(E,B).

• Cannot generalise to arbitrary depth

• Difficult to learn because of its size

Recursion

connected(A,B):- edge(A,B).

Recursion

connected(A,B):- edge(A,B).
connected(A,B):- edge(A,C),connected(C,B).

Recursion

connected(A,B):- edge(A,B).
connected(A,B):- edge(A,C),connected(C,B).

Recursion

• Easier to learn because of its size

• Need fewer examples

Automatically invent new symbols

Predicate invention

greatgrandparent(A,B):- mother(A,C),mother(C,D),mother(D,B).

Predicate invention

greatgrandparent(A,B):- mother(A,C),mother(C,D),mother(D,B).
greatgrandparent(A,B):- mother(A,C),mother(C,D),father(D,B).

Predicate invention

greatgrandparent(A,B):- mother(A,C),mother(C,D),mother(D,B).
greatgrandparent(A,B):- mother(A,C),mother(C,D),father(D,B).
greatgrandparent(A,B):- mother(A,C),father(C,D),mother(D,B).

Predicate invention

greatgrandparent(A,B):- mother(A,C),mother(C,D),mother(D,B).
greatgrandparent(A,B):- mother(A,C),mother(C,D),father(D,B).
greatgrandparent(A,B):- mother(A,C),father(C,D),mother(D,B).
greatgrandparent(A,B):- mother(A,C),father(C,D),father(D,B).

Predicate invention

greatgrandparent(A,B):- mother(A,C),mother(C,D),mother(D,B).
greatgrandparent(A,B):- mother(A,C),mother(C,D),father(D,B).
greatgrandparent(A,B):- mother(A,C),father(C,D),mother(D,B).
greatgrandparent(A,B):- mother(A,C),father(C,D),father(D,B).
greatgrandparent(A,B):- father(A,C),father(C,D),father(D,B).
greatgrandparent(A,B):- father(A,C),father(C,D),mother(D,B).
greatgrandparent(A,B):- father(A,C),mother(C,D),father(D,B).
greatgrandparent(A,B):- father(A,C),mother(C,D),mother(D,B).

Predicate invention

greatgrandparent(A,B):- mother(A,C),mother(C,D),mother(D,B).
greatgrandparent(A,B):- mother(A,C),mother(C,D),father(D,B).
greatgrandparent(A,B):- mother(A,C),father(C,D),mother(D,B).
greatgrandparent(A,B):- mother(A,C),father(C,D),father(D,B).
greatgrandparent(A,B):- father(A,C),father(C,D),father(D,B).
greatgrandparent(A,B):- father(A,C),father(C,D),mother(D,B).
greatgrandparent(A,B):- father(A,C),mother(C,D),father(D,B).
greatgrandparent(A,B):- father(A,C),mother(C,D),mother(D,B).

Predicate invention

• Difficult to learn because of its size

• Need many examples

greatgrandparent(A,B):- inv(A,C),inv(C,D),inv(D,B).
inv(A,B):- mother(A,B).
inv(A,B):- father(A,B).

Predicate invention

greatgrandparent(A,B):- inv(A,C),inv(C,D),inv(D,B).
inv(A,B):- mother(A,B).
inv(A,B):- father(A,B).

• Easier to learn because of its size

• Need fewer examples

Predicate invention

Predicate invention + recursion

The combination is essential to learn many complex problems

Irene Stahl: The Appropriateness of Predicate Invention as Bias Shift Operation in ILP. Mach.
Learn. 20(1-2): 95-117 (1995).

Predicate invention + recursion

Find the maximum value of a list and add it to every element

Predicate invention + recursion

f(A,B):- inv1(A,Max), ….
inv1(A,B):- head(A,B), empty(B).
inv1(A,B):- head(A,B), inv1(A,C), B>C.
inv1(A,B):- head(A,C), inv1(A,B), B=<D.

Predicate invention + recursion

f(A,B):- inv1(A,Max), inv2(A,Max,B).
inv1(A,B):- head(A,B), empty(B).
inv1(A,B):- head(A,B), inv1(A,C), B>C.
inv1(A,B):- head(A,C), inv1(A,B), B=<D.
inv2(A,Max,B):- empty(A), empty(B).
inv2(A,Max,B):- prepend(H1,T1,A), add(Max,H1,H2),

inv2(T1,Max,T2), prepend(H2,T2,B).

Negation

Negation

Predicate invention + negation

Predicate invention + negation

“there are two red cones”

Predicate invention + negation

f(S):- cone(S,A),red(A),cone(S,B),red(B),all_diff(A,B).

Predicate invention + negation

Predicate invention + negation

“there are exactly two cones and both are red”
or

“there are exactly three cones and all three are red”

Predicate invention + negation

very messy program here

Predicate invention + negation

f(S):- not inv1(S).
inv1(S):- cone(S,P), not red(P).

Predicate invention + negation

f(S):- not inv1(S).
inv1(S):- cone(S,P), not red(P).

there is a cone that is not red

Predicate invention + negation

f(S):- not inv1(S).
inv1(S):- cone(S,P), not red(P).

there is a cone that is not red

it is not true that there is a cone that is not red

Predicate invention + negation

f(S):- not inv1(S).
inv1(S):- cone(S,P), not red(P).

all the cones are red

Higher-order invention

Input Output

[alice,bob,charlie] [alic,bo,charli]

[inductive,logic,programming] [inductiv,logi,programmin]

[ferrara,orleans,london,kyoto] [ferrar,orlean,londo,kyot]

Cropper, Morel, and Muggleton, “Learning higher-order logic programs”, MLJ 2020

Higher-order invention

f(A,B):-map(A,B,inv1).
inv1(A,B):-inv2(A,C),tail(C,D),inv2(D,B).
inv2(A,B):-reduceback(A,B,concat).

Higher-order invention

f(A,B):-map(A,B,inv1).
inv1(A,B):-inv2(A,C),tail(C,D),inv2(D,B).
inv2(A,B):-reduceback(A,B,concat).

invents reverse

Higher-order invention

f(A,B):-map(A,B,inv1).
inv1(A,B):-inv2(A,C),tail(C,D),inv2(D,B).
inv2(A,B):-reduceback(A,B,concat).

invents reverse

invents droplast

Higher-order invention

f(A,B):-map(A,B,inv1).
inv1(A,B):-inv2(A,C),tail(C,D),inv2(D,B).
inv2(A,B):-reduceback(A,B,concat).

invents reverse

reuses inv2
invents droplast

Higher-order invention

Input Output

[alice,bob,charlie] [alic,bo]

[inductive,logic,programming] [inductiv,logi]

[ferrara,orleans,london,kyoto] [ferrar,orlean,londo]

Higher-order invention

f(A,B):-map(A,C,inv1),inv1(C,B).
inv1(A,B):-inv2(A,C),tail(C,D),inv2(D,B).
inv2(A,B):-reduceback(A,B,concat).

Higher-order invention

f(A,B):-map(A,C,inv1),inv1(C,B).
inv1(A,B):-inv2(A,C),tail(C,D),inv2(D,B).
inv2(A,B):-reduceback(A,B,concat).

reuses droplast
invents droplast

Optimality: textual complexity
f(A):- element(A,1).
f(A):- element(A,2).
f(A):- element(A,3).
f(A):- element(A,4).
f(A):- element(A,5).
f(A):- element(A,6).
f(A):- element(A,7).
f(A):- element(A,8).
f(A):- element(A,9).
f(A):- element(A,10).

Optimality: textual complexity

f(A):- element(A,101),element(A,102).

Optimality: efficiency

input output
sheep e

alaca a

chicken ?

Cropper & Muggleton, “Learning efficient logic programs”, MLJ 2019

Optimality: efficiency

input output
sheep e

alaca a

chicken c

f(A,B):- head(A,B),tail(A,C),element(C,B).
f(A,B):- tail(A,C),f(C,B).

Optimality: efficiency

f(A,B):- head(A,B),tail(A,C),element(C,B).
f(A,B):- tail(A,C),f(C,B).

O(n^2)

Optimality: efficiency

f(A,B):- mergesort(A,C),inv1(C,B).
inv1(A,B):- head(A,B),tail(A,C),head(C,B).
inv1(A,B):- tail(A,C),inv1(C,B).

Optimality: efficiency

O(n log n)

f(A,B):- mergesort(A,C),inv1(C,B).
inv1(A,B):- head(A,B),tail(A,C),head(C,B).
inv1(A,B):- tail(A,C),inv1(C,B).

Optimality: efficiency

Predicate invention and recursion!

f(A,B):- mergesort(A,C),inv1(C,B).
inv1(A,B):- head(A,B),tail(A,C),head(C,B).
inv1(A,B):- tail(A,C),inv1(C,B).

Optimality: efficiency

• noisy examples

• noisy BK

Noise

Noisy examples

Almost all ILP systems handle noisy examples!

Noisy examples

Sequential covering or divide-and-conquer
- Aleph, Progol, FOIL, TILDE, ATOM, QuickFOIL

Noisy examples

Solver optimisation
- ILASP, Popper

Noisy BK

Almost no ILP systems handle noisy BK!

Numerical data

Hocquette & Cropper, “Relational program synthesis with numerical reasoning”, AAAI 2023

Numerical data

zendo(A):- piece(A,B),contact(B,C),size(C,D),geq(D,7).

Numerical data

equilibrium(A):- mass(A,B),forces(A,C),sum(C,D),mult(B,9.807,D).

Numerical data

pharma(A):- zinc(A,B), hacc(A,C), dist(A,B,C,D), leq(D,4.18), geq(D,2.22).
pharma(A):- hacc(A,C), hacc(A,E), dist(A,B,C,D), geq(D,1.23), leq(D,3.41).
pharma(A):- zinc(A,C), zinc(A,B), bond(B,C,du), dist(A,B,C,D), leq(D,1.23).

Break time

Part 4: ILP systems

TILDE

Divide-and-conquer strategy: recursively split the data

using a conjunction with the highest information gain

TILDE
Given:
- Classes C
- Mode declarations M
- Positive (E+) and negative (E-) examples as interpretations
- BK in the form of a definite program

TILDE
Given:
- Classes C
- Mode declarations M
- Positive (E+) and negative (E-) examples as interpretations
- BK in the form of a definite program

Return:
A normal program hypothesis H such that:
- H is consistent with M
- H is complete and consistent

TILDE

Advantages:
- Can learn normal logic programs
- Supports both categorical and numerical data

Disadvantages:
- Does not support recursion
- Need for lookahead

TILDE

ASPAL

1. Generate all possible rules

ASPAL

1. Generate all possible rules

2. Use an ASP solver to find a subset of the rules

that is complete and consistent

ASPAL
Given:
- Mode declarations M
- B in the form of a normal program
- Positive (E+) and negative (E-) examples as a set of facts
- A penalty function γ

ASPAL
Given:
- Mode declarations M
- B in the form of a normal program
- Positive (E+) and negative (E-) examples as a set of facts
- A penalty function γ

Return:
A normal program hypothesis H such that:
- H is consistent with M
- H is complete and consistent
- The penalty function γ is minimal

ASPAL

ASPAL

ASPAL

A flag which denotes whether this rule has been selected

Builds rules with extra ‘abducible’ literals.

ASPAL
bird(alice).
bird(betty).
can(alice,fly).
can(betty,swim).
ability(fly).
ability(swim).
penguin(X):- bird(X), rule(r1).
penguin(X):- bird(X), not can(X,C1), rule(r2,C1).
penguin(X):- bird(X), not can(X,C1), not can(X,C2), rule(r3,C1,C2).
0 {rule(r1),rule(r2,fly),rule(r2,swim),rule(r3,fly,swim\}4.
goal : - penguin(betty), not penguin(alice).
: - not goal.

ASPAL Guess which rules should be included

bird(alice).
bird(betty).
can(alice,fly).
can(betty,swim).
ability(fly).
ability(swim).
penguin(X):- bird(X), rule(r1).
penguin(X):- bird(X), not can(X,C1), rule(r2,C1).
penguin(X):- bird(X), not can(X,C1), not can(X,C2), rule(r3,C1,C2).
0 {rule(r1),rule(r2,fly),rule(r2,swim),rule(r3,fly,swim\}4.
goal : - penguin(betty), not penguin(alice).
: - not goal.

ASPAL

The role of the ASP solver is to:

- prove the positive examples

- disprove the negative examples

- guess rules when necessary

ASPAL

ASPAL - why does it work?

It combines the search for a solution with example

coverage.

By using ASP solvers, it can jump around the search

space.

ASP solvers are really good!

ASPAL advantages

Simple

Recursion

Optimality

Efficient for small rules

ASPAL disadvantages

Cannot learn large rules

Cannot handle large BK

Popper

Popper

1. Generate programs one-at-a-time

Popper

1. Generate programs one-at-a-time

2. Test programs on the data and use the outcome to build

syntactic constraints on the hypothesis space

Popper

1. Generate programs one-at-a-time

2. Test programs on the data and use the outcome to build

syntactic constraints on the hypothesis space

3. Use the constraints to guide the search

PopperPopper

PopperPopper

Combine Explain

Test

Generate

Constrain

Illustrative example

input output

laura a

penelope e

emma m

james e

input output entailed

laura a no

penelope e no

emma m no

james e no

input output entailed

laura a no

penelope e no

emma m no

james e no

H1 is too specific

Prune specialisations

Prune specialisations

Prune specialisations

Prune specialisations

input output entailed

laura a yes

penelope e yes

emma m yes

james e no

input output entailed

laura a yes

penelope e yes

emma m yes

james e no

H4 is too general

Prune generalisations

Prune generalisations

Prune generalisations

Prune generalisations

input output entailed

laura a yes

penelope e yes

emma m no

james e no

H5 does not fail, so return it

1. Generate (ASP)

2. Test (Prolog)

3. Constrain (ASP)

Popper

1. Generate (ASP)

2. Test (Prolog)

3. Explain (Prolog)

4. Combine (ASP)

5. Constrain (ASP)

Popper

Decomposes the learning problem

Popper - why does it work?

Never repeats itself

Popper - why does it work?

Reasons about syntax, not semantics

Popper - why does it work?

Uses the right tool for the job

Popper - why does it work?

Optimality
Recursion
Infinite BK
Complex numerical reasoning
Predicate invention
Programs with many rules
Programs with moderately sized rules

Popper advantages

Noisy data

Cannot learn large rules (20+ literals)

Popper disadvantages

Part 5: Applications

Robot scientist

King et al. Nature, 2004

Robot scientist

Robot scientist

The first machine to discover new scientific knowledge
independently of its human creators

Drug design

King et al. Proceedings of the National Academy of Sciences, 1992

Drug design

great(A,B):-  
 struc(A,C,D,E),
 struc(B,F,h,h),
 h_donor(C,hdonO),
 polarisable(C,polaril),
 flex(F,G),
 flex(C,H),
 great_flex(G,H),
 great6_flex(G).

Drug design

Drug A is better than drug B if:
 drug B has no substitutions at positions 4 and 5,
 and drug B at position 3 has flexibility >6,
 and drug A at position 3 has polarisability = 1,
 and drug A at position 3 has hydrogen donor = 0,
 and drug A at position 3 is less flexible than drug B at position 3.

Ando, Howard Y., et al. "Discovering H-bonding rules in crystals with inductive logic programming." Molecular pharmaceutics 3.6 (2006): 665-674.

bind(A):-
 has_aminoacid(A,B,asp),
 atom_to_atom_dist(B,B,'N','OD2',4.6,0.5),
 has_amino_acid(A,C,leu),
 has_amino_acid(A,D,cys),
 atom_to_center_dist(B,'C',7.6,0.5).

Scientific discovery

Santos et al. BMC Bioinformatics, 2012

task input output

f philip.larkin@sj.ox.ac.uk Philip Larkin

Data curation

task input output

f philip.larkin@sj.ox.ac.uk Philip Larkin

f(A,B):-
 inv1(A,C),skip1(C,D),space(D,E),
 inv1(E,F),skiprest(F,B).
inv1(A,B):-
 uppercase(A,C),copyword(C,B).

Data curation

~10 seconds

task input output

f philip.larkin@sj.ox.ac.uk Philip Larkin

f(A,B):-
 inv1(A,C),skip1(C,D),space(D,E),
 inv1(E,F),skiprest(F,B).
inv1(A,B):-
 uppercase(A,C),copyword(C,B).

Data curation

task input output

g tony Tony

Data curation

task input output

g tony Tony

g(A,B):-uppercase(A,C),copyword(C,B).

Data curation

task input output

g tony Tony

f philip.larkin@sj.ox.ac.uk Philip Larkin

g(A,B):-uppercase(A,C),copyword(C,B).

Data curation

task input output

g tony Tony

f philip.larkin@sj.ox.ac.uk Philip Larkin

g(A,B):-uppercase(A,C),copyword(C,B).

f(A,B):-g(A,C),skip1(C,D),space(D,E),
 g(E,F),skiprest(F,B).

Data curation

task input output

g tony Tony

f philip.larkin@sj.ox.ac.uk Philip Larkin

2 seconds*

g(A,B):-uppercase(A,C),copyword(C,B).

f(A,B):-g(A,C),skip1(C,D),space(D,E),
 g(E,F),skiprest(F,B).

Data curation

Lin et al. ECAI2014

Data curation

Game playing

Silver et al. AAAI, 2020

Part 6: Challenges and
opportunities

Part 6: Challenges and
opportunities

Challenges

Usability

“while over 100 ILP systems have been constructed since 1991,
less than a handful can even begin to be used meaningfully by ILP
practitioners other than the original developers”

Usability

Many systems are prototypes and are not maintained

Systems are inconsistent among themselves (w.r.t. language bias)

Only the developers know how to use the systems properly

Usability

“You often need a PhD in ILP to use any of the tools”

What do we need?

Better engineered tools

What do we need?

Better maintained tools

What do we need?

Standardisation

What do we need?

Standardisation

Language bias

The biggest deterrent from ILP

Language bias

weak bias: too slow to be usable

strong bias: fast learning but might exclude the target program

Language bias what should we do?

Automatically identify an appropriate language bias

A vastly under-researched area of ILP!

Predicate invention

Predicate invention is central for complex tasks

Predicate invention

Predicate invention

Predicate invention

Challenge: what is a useful predicate to invent?

Recent progress: find reoccurring subprograms from
 available solutions to similar problems

Predicate invention

Discover useful and reusable abstractions before and during learning

Dumancic et al, “Knowledge Refactoring for Inductive Program Synthesis”, AAAI 2021

Learning from raw data

Learning from raw data

ILP assumes data to be structured, but plenty of data available in raw formats

Not every problem is representable in symbolic form

connected(A,B):- edge(A,B).
connected(A,B):- edge(A,C),connected(C,B).

Learning from raw data

Some progress in recent years

Dai & Muggleton, “Abductive Knowledge Induction From Raw Data”, 2021

Evans et al, “Making sense of sensory input”, 2021

Learning from raw data

What should we aim for?

Techniques that treat learning to perceive and learning a program
as integrated components

Learning with uncertain data

ILP assumes that BK is correct, but real world is often uncertain

Do birds fly?

How about this bird?

Learning with uncertain data

Various probabilistic logics have been developed since ‘90s

0.8 :: weather(sunny). Query: what is the probability that
 a particular statement is true?

Problog, Markov logic networks, Probabilistic Soft Logic, …

Challenge: probabilistic logic programs are not efficient

Learning with uncertain data

What should we aim for?

Handling uncertainties in BK, especially in lifelong learning

Relevance of BK

BK is treated as a monolithically construct

Only a tiny percentage of BK is relevant for a task

How do we discover a relevant part of BK?

Scalability?

“ILP does not scale to real-world problems”

What does scalability mean?

What does scalability mean?

Many rules?

Large rules?

Large numbers of examples?

Large amounts of BK?

What does scalability mean?

Many rules?

Large rules?

Large numbers of examples?

Large amounts of BK?

Almost all ILP systems
can learn programs with
100s of rules

What does scalability mean?

Many rules?

Large rules?

Large numbers of examples?

Large amounts of BK?

Aleph can learn
programs with rules with
100s of literals

What does scalability mean?

Many rules?

Large rules?

Large numbers of examples?

Large amounts of BK?

QuickFOIL can learn
programs from 2+
million examples

What does scalability mean?

Many rules?

Large rules?

Large numbers of examples?

Large amounts of BK?
QuickFOIL can learn
programs from 200
million background facts

What is not scalable?

Learning programs with long chains of reasoning

Part 6: Challenges and
opportunities

Grand challenges

Push ILP beyond what is currently possible

Require some of the outlined challenges to be solved

Challenging problems

Abstraction and Reasoning Corpus

Find the largest object and copy it

Abstraction and Reasoning Corpus

Identify the lines, complete them,
and paint with the most frequent color

Abstraction and Reasoning Corpus

Connect yellow boxes through purple pixels,
you are allowed to turn only at the green box

Abstraction and Reasoning Corpus

Mirror over the green line

Abstraction and Reasoning Corpus

“Simple” high-level solutions, but requires to bridge the gap from pixels

Only a few examples of every task

Solutions are programs

Inductive general game playing

Can we learn the rules (semantics) of games from observations?

next_score(P,N):-
 true_score(P,N),
 draws(P).
next_score(P,N):-
 true_score(P,N),
 loses(P).
next_score(P,N2):-
 true_score(P,N1),
 succ(N2,N1),
 wins(P).

draws(P):-
 does(P,A),
 does(Q,A),
 distinct(P,Q).
loses(P):-
 does(P,A1),
 does(Q,A2),
 distinct(P,Q),
 beats(A2,A1).
wins(P):-
 does(P,A1),
 does(Q,A2),
 distinct(P,Q),
 beats(A1,A2).

*draws/1, loses/1, wins/1 are not provided as BK!

Rock, paper, scissors

Why is IGGP interesting?

Many diverse games

Not hand-crafted by a system designer

Cannot predefine the perfect language bias

Need to learn perfect rules!

IGGP is hard

SOTA performance is learning perfect rules for 40% of the games

What is needed for IGGP?

Negation

Predicate invention

Very large rules

Not overfitting

https://github.com/andrewcropper/iggp

https://github.com/andrewcropper/iggp

IGGP is hard

Need to invent the concept of a line and
reason about it

Large biological knowledge bases

Vast amounts of biological data

Protein interaction networks
Gene expressions
Molecular functional interactions
…

Large biological knowledge bases

- Many of them are relational
- Require discovering rules about interactions
- Need to be explainable

- Early successes of ILP

Visual question answering

Visual question answering

- Need to understand an image
- Turn question into a query
- Integrate common sense knowledge

Scientific discovery

- Learn with prior knowledge
- Hypotheses need to be interpretable
- Test and refine
- Experiments should verifiable

Part 6: Challenges and
opportunities

Opportunities

Loads of opportunities

Machine learning

Constraint solving

Knowledge representation

Databases

ILP

Constraint solving community

Recent approaches frame the ILP problem as a constraint problem:
- ASPAL
- ATOM
- ILASP
- Popper
- HEXIL
- Apperception

Constraint solving community

Recent approaches frame the ILP problem as a constraint problem:
- ASPAL
- ATOM
- ILASP
- Popper
- HEXIL
- Apperception

All (except ATOM) use ASP

Constraint solving opportunities

Can we model these problems better?

Are other solving approaches better (SAT,SMT,CP)?

Database/Datalog community

For many ILP applications, Datalog suffices

Databases can help scale ILP significantly (QuickFOIL)

Database/Datalog opportunities

Can we use ideas from databases to ILP scale to larger amounts of BK?

Can we use ILP for query synthesis in Datalog/SQL systems?

Knowledge representation community

ILP solves the knowledge acquisition problem

Knowledge representation community

How can we assemble large (consistent) knowledge bases with ILP?

Meta-reasoning: can what we know help us to learn new things faster?

Wrap-up

Wrap up

Inductive logic programming: ML + logic

Attractive features: Small data, interpretable, relational

Attractive capabilities: Recursion, optimality, predicate invention

Lots of opportunities for interaction with other communities

References
Inductive Logic Programming. S. Muggleton. New Generation Computing 1991.

Inductive logic programming at 30: a new introduction A. Cropper and S.
Dumančić, JAIR 2022.

