Deep learning revolutionized machine learning by automatically learning multiple layers of abstract, re-usable and compositional features for a given task. Despite huge interest, it still heavily focuses on sensory data such as images and speech – here we focus on learning latent features of rich relational data formats such as graphs and relational databases!

Relational data contains both instances and relationships amongst them.

Problem

- Deep learning revolutionized machine learning by automatically learning multiple layers of abstract, re-usable and compositional features for a given task. Despite huge interest, it still heavily focuses on sensory data such as images and speech. Here we focus on learning latent features of relational data formats such as graphs and relational databases.

Current state of affairs

Vectors spaces in knowledge graphs: Replace symbols with vectors, and logic with algebra.

Learning representation = learning vector representation on entities, and matrices/functions for relations.

A good vector representation is the one that, given a true fact `wasBornIn(barack, honolulu)`, results in a high value of the vector-matrix multiplication of the corresponding entities.

```
[barack]

wasBornIn(...)

[honolulu]
```

and a low value for the false example, e.g. `wasBornIn(barack, nairobi)`.

Goal

Develop an **relational** representation learning method that is:

- **relational** – considers both instances and their relationships
- **unsupervised** – no labels provided
- **interpretable** – latent features defined in logic
- integrates with existing relational learners

Statistical relational models

0.3::stress(X) :- person(X).
0.4::asthma(X) :- smokes(X).
smokes(X) :- stress(X).
smokes(X) :- friend(X,Y).
person(angelika).
person(joris).
person(jonas).
friend(joris,jonas).
friend(joris,angelika).

Similarity of relational data

Similarity of instances and their relationships is assessed with **ReCeNT** [Dumancic & Blockeel, MLJ 2017].

Experiments

Question: Does learning from latent spaces benefit relational learners compared to learning in the original space?

- lower model complexity
- improved performance

Setup

- learn features on training set, map test data to learned clusters (cross validation)
- learn relational decision tree **TILDE** on original and latent representations

Results

TILDE models learned on latent representations are less complex in terms of the number of nodes in a tree. **TILDE** models learned on latent representations often perform better (MRC = related approach).

References

Kok, S., & Domingos, P.: *Statistical predicate invention*, ICML 2007

Code

`dtai.cs.kuleuven.be/software/curled`